×

Modern Monte Carlo methods for efficient uncertainty quantification and propagation: a survey. (English) Zbl 07910756


MSC:

62-08 Computational methods for problems pertaining to statistics

Software:

UQpy

References:

[1] Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. · Zbl 0314.62039
[2] Ali, A. A., Ullmann, E., & Hinze, M. (2017). Multilevel Monte Carlo analysis for optimal control of elliptic PDEs with random coefficients. SIAM/ASA Journal on Uncertainty Quantification, 5(1), 466-492. · Zbl 1371.35371
[3] Augustin, T., Coolen, F. P., De Cooman, G., & Troffaes, M. C. (2014). Introduction to imprecise probabilities, Hoboken, NJ: John Wiley & Sons. · Zbl 1290.62003
[4] Babǔska, I., Nobile, F., & Tempone, R. (2007). A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Journal on Numerical Analysis, 45(3), 1005-1034. · Zbl 1151.65008
[5] Bae, H.‐R., Grandhi, R. V., & Canfield, R. A. (2004). Epistemic uncertainty quantification techniques including evidence theory for large‐scale structures. Computers & Structures, 82(13-14), 1101-1112.
[6] Beer, M., Ferson, S., & Kreinovich, V. (2013). Imprecise probabilities in engineering analyses. Mechanical Systems and Signal Processing, 37(1-2), 4-29.
[7] Ben‐Haim, Y., & Elishakoff, I. (2013). Convex models of uncertainty in applied mechanics, Amsterdam, Netherlands: Elsevier.
[8] Benner, P., Gugercin, S., & Willcox, K. (2015). A survey of projection‐based model reduction methods for parametric dynamical systems. SIAM Review, 57(4), 483-531. · Zbl 1339.37089
[9] Beskos, A., Jasra, A., Law, K., Tempone, R., & Zhou, Y. (2017). Multilevel sequential Monte Carlo samplers. Stochastic Processes and their Applications, 127(5), 1417-1440. · Zbl 1362.65010
[10] Bijl, H., Lucor, D., Mishra, S., & Schwab, C. (2013). Uncertainty quantification in computational fluid dynamics (Vol. 92), Berlin/Heidelberg, Germany: Springer Science & Business Media. · Zbl 1276.76005
[11] Bonfiglio, L., Perdikaris, P., Brizzolara, S., & Karniadakis, G. (2018). Multi‐fidelity optimization of super‐cavitating hydrofoils. Computer Methods in Applied Mechanics and Engineering, 332, 63-85. · Zbl 1439.74256
[12] Bostanabad, R., Liang, B., Gao, J., Liu, W. K., Cao, J., Zeng, D., … Chen, W. (2018). Un‐ certainty quantification in multiscale simulation of woven fiber composites. Computer Methods in Applied Mechanics and Engineering, 338, 506-532. · Zbl 1440.74102
[13] Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods & Research, 33(2), 261-304.
[14] Caflisch, R. E. (1998). Monte Carlo and Quasi‐Monte Carlo methods. Acta Numer, 7, 1-49. · Zbl 0949.65003
[15] Capṕe, O., Douc, R., Guillin, A., Marin, J.‐M., & Robert, C. P. (2008). Adaptive importance sampling in general mixture classes. Statistics and Computing, 18(4), 447-459.
[16] Chaudhuri, A., Lam, R., & Willcox, K. (2018). Multifidelity uncertainty propagation via adaptive surrogates in coupled multidisciplinary systems. AIAA Journal, 56, 235-249.
[17] Chernatynskiy, A., Phillpot, S. R., & LeSar, R. (2013). Uncertainty quantification in multiscale simulation of materials: A prospective. Annual Review of Materials Research, 43, 157-182.
[18] Cook, L. W., Jarrett, J. P., & Willcox, K. E. (2018). Generalized information reuse for optimization under uncertainty with non‐sample average estimators. International Journal for Numerical Methods in Engineering, 115(12), 1457-1476. · Zbl 07865116
[19] Cornuet, J.‐M., Marin, J.‐M., Mira, A., & Robert, C. P. (2012). Adaptive multiple importance sampling. Scandinavian Journal of Statistics, 39(4), 798-812. · Zbl 1319.62059
[20] Dannert, M. M., Faes, M., Rodolfo, M., Fau, A., Nackenhorst, U., & Moens, D. (2021). Imprecise random field analysis for non‐linear concrete damage analysis. Mechanical Systems and Signal Processing, 150, 107343. https://doi.org/10.1016/j.ymssp.2020.107343 · doi:10.1016/j.ymssp.2020.107343
[21] Decadt, A., De Cooman, G., & De Bock, J. (2019). Monte Carlo estimation for imprecise probabilities: Basic properties. Proceedings of the Eleventh International Symposium on Imprecise Probabilities: Theories and Applications, PMLR 103, 135-144.
[22] Dempster, A. P. (2008). Upper and lower probabilities induced by a multivalued mapping. In Classic works of the Dempster‐Shafer theory of belief functions (pp. 57-72). Berlin/Heidelberg, Germany: Springer.
[23] Der Kiureghian, A., & Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter?Structural Safety, 31(2), 105-112.
[24] Dodwell, T., Ketelsen, C., Scheichl, R., & Teckentrup, A. (2019). Multilevel Markov chain Monte Carlo. SIAM Review, 61(3), 509-545. · Zbl 1432.65008
[25] Dodwell, T. J., Ketelsen, C., Scheichl, R., & Teckentrup, A. L. (2015). A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow. SIAM/ASA Journal on Uncertainty Quantification, 3(1), 1075-1108. · Zbl 1330.65007
[26] Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3), 197-208.
[27] Durlofsky, L. J., & Chen, Y. (2012). Uncertainty quantification for subsurface flow problems using coarse‐scale models. In Numerical analysis of multiscale problems (pp. 163-202). Berlin/Heidelberg, Germany: Springer. · Zbl 1245.86003
[28] Eigel, M., Merdon, C., & Neumann, J. (2016). An adaptive multilevel Monte Carlo method with stochastic bounds for quantities of interest with uncertain data. SIAM/ASA Journal on Uncertainty Quantification, 4(1), 1219-1245. · Zbl 1398.35306
[29] Elfverson, D., Hellman, F., & Målqvist, A. (2016). A multilevel Monte Carlo method for computing failure probabilities. SIAM/ASA Journal on Uncertainty Quantification, 4(1), 312-330. · Zbl 1343.65004
[30] Fairbanks, H. R., Doostan, A., Ketelsen, C., & Iaccarino, G. (2017). A low‐rank control variate for multilevel Monte Carlo simulation of high‐dimensional uncertain systems. Journal of Computational Physics, 341, 121-139. · Zbl 1378.65021
[31] Ferson, S., & Hajagos, J. G. (2004). Arithmetic with uncertain numbers: Rigorous and (often) best possible answers. Reliability Engineering & System Safety, 85(1-3), 135-152.
[32] Fetz, T. (2019). Improving the convergence of iterative importance sampling for computing upper and lower expectations. In International symposium on imprecise probabilities: Theories and applications, 103, 185-193. Ghent, Belgium: Proceedings of Machine Learning Research (PMLR).
[33] Fetz, T., & Oberguggenberger, M. (2004). Propagation of uncertainty through multivariate functions in the framework of sets of probability measures. Reliability Engineering & System Safety, 85(1-3), 73-87.
[34] Fetz, T., & Oberguggenberger, M. (2016). Imprecise random variables, random sets, and Monte Carlo simulation. International Journal of Approximate Reasoning, 78, 252-264. · Zbl 1397.60015
[35] Fleeter, C. M., Geraci, G., Schiavazzi, D. E., Kahn, A. M., & Marsden, A. L. (2020). Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics. Computer Methods in Applied Mechanics and Engineering, 365, 113030. · Zbl 1442.76162
[36] Gao, Z., Lim, D., Schwartz, K. G., & Mavris, D. N. (2019). A nonparametric‐based approach for the characterization and propagation of epistemic uncertainty due to small datasets. In AIAA Scitech 2019 forum (p. 1490). San Diego, CA: American Institute of Aeronautics and Astronautics, Inc.
[37] Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI‐6(6), 721-741. · Zbl 0573.62030
[38] Geraci, G., Eldred, M. S., & Iaccarino, G. (2017). A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace applications. In 19th AIAA non‐deterministic approaches conference (p. 1951). American Institute of Aeronautics and Astronautics, Inc.: Grapevine, TX, USA.
[39] Ghanem, R., Higdon, D., & Owhadi, H. (2017). Handbook of uncertainty quantification (Vol. 6, Berlin/Heidelberg, Germany: Springer. · Zbl 1372.60001
[40] Ghanem, R. G., & Spanos, P. D. (2003). Stochastic finite elements: A spectral approach, North Chelmsford, MA: Courier Corporation.
[41] Giles, M. B. (2008). Multilevel Monte Carlo path simulation. Operations Research, 56(3), 607-617. · Zbl 1167.65316
[42] Giles, M. B. (2013). Multilevel Monte Carlo methods. In Monte Carlo and quasi‐Monte Carlo methods 2012 (pp. 83-103). Berlin/Heidelberg, Germany: Springer. · Zbl 1302.65004
[43] Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numer, 24, 259-328. · Zbl 1316.65010
[44] Giles, M. B., & Reisinger, C. (2012). Stochastic finite differences and multilevel Monte Carlo for a class of SPDEs in finance. SIAM Journal on Financial Mathematics, 3(1), 572-592. · Zbl 1257.35200
[45] Giles, M. B., & Waterhouse, B. J. (2009). Multilevel quasi‐Monte Carlo path simulation. Advanced Financial Modelling, Radon Series on Computational and Applied Mathematics, 8, 165-181. · Zbl 1181.91335
[46] Giselle Ferńandez‐Godino, M., Park, C., Kim, N. H., & Haftka, R. T. (2019). Issues in deciding whether to use multifidelity surrogates. AIAA Journal, 57(5), 2039-2054.
[47] Glasserman, P. (2013). Monte Carlo methods in financial engineering (Vol. 53), Berlin/Heidelberg, Germany: Springer Science & Business Media.
[48] Gorodetsky, A., Geraci, G., Eldred, M., & Jakeman, J. D. (2020). A generalized approximate control variate framework for multifidelity uncertainty quantification. Journal of Computational Physics, 408, 109257. · Zbl 07505605
[49] Guo, Z., Song, L., Park, C., Li, J., & Haftka, R. T. (2018). Analysis of dataset selection for multifidelity surrogates for a turbine problem. Structural and Multidisciplinary Optimization, 57(6), 2127-2142.
[50] Guo, Z., Yi, J., Fu, Y., Huang, Q., & Teng, Y. (2019). Imprecise risk assessment of distribution network based on evidence and utility theory. In 2019 IEEE innovative smart grid technologies‐Asia (ISGT Asia) (pp. 497-501). New York, NY: IEEE.
[51] Haji‐Ali, A.‐L., Nobile, F., & Tempone, R. (2016). Multi‐index Monte Carlo: When sparsity meets sampling. Numerische Mathematik, 132(4), 767-806. · Zbl 1339.65009
[52] Haji‐Ali, A.‐L., & Tempone, R. (2018). Multilevel and multi‐index Monte Carlo methods for the McKean-Vlasov equation. Statistics and Computing, 28(4), 923-935. · Zbl 1387.65004
[53] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109. · Zbl 0219.65008
[54] Heinkenschloss, M., Kramer, B., Takhtaganov, T., & Willcox, K. (2018). Conditional‐ value‐at‐risk estimation via reduced‐order models. SIAM/ASA Journal on Uncertainty Quantification, 6(4), 1395-1423. · Zbl 1405.35263
[55] Heinrich, S. (1998). Monte Carlo complexity of global solution of integral equations. Journal of Complexity, 14(2), 151-175. · Zbl 0920.65090
[56] Heinrich, S. (2000). The multilevel method of dependent tests. In Advances in stochastic simulation methods (pp. 47-61). Springer. · Zbl 0959.65007
[57] Heinrich, S. (2001). Multilevel Monte Carlo methods. In International conference on large‐scale scientific computing (pp. 58-67). Germany: Springer, Berlin/Heidelberg. · Zbl 1031.65005
[58] Herrmann, L., & Schwab, C. (2019). Multilevel quasi‐Monte Carlo integration with product weights for elliptic PDEs with lognormal coefficients. ESAIM: Mathematical Modelling and Numerical Analysis, 53(5), 1507-1552. · Zbl 07135561
[59] Hoel, H., Law, K. J., & Tempone, R. (2016). Multilevel ensemble kalman filtering. SIAM Journal on Numerical Analysis, 54(3), 1813-1839. · Zbl 1401.65008
[60] Jasra, A., Kamatani, K., Law, K. J., & Zhou, Y. (2017). Multilevel particle filters. SIAM Journal on Numerical Analysis, 55(6), 3068-3096. · Zbl 1477.62260
[61] Jasra, A., Kamatani, K., Law, K. J., & Zhou, Y. (2018). A multi‐index Markov chain Monte Carlo method. International Journal for Uncertainty Quantification, 8(1), 61-73. · Zbl 1498.65008
[62] Jasra, A., Law, K. J., & Zhou, Y. (2016). Forward and inverse uncertainty quantification using multilevel Monte Carlo algorithms for an elliptic nonlocal equation. International Journal for Uncertainty Quantification, 6(6), 501-514. · Zbl 1498.60326
[63] Jofre, L., Geraci, G., Fairbanks, H., Doostan, A., & Iaccarino, G. (2018). Multi‐fidelity uncertainty quantification of irradiated particle‐laden turbulence. Center for Turbulence Research Annual Research Briefs, Stanford University, 2017. .
[64] Kalos, M. H., & Whitlock, P. A. (2009). Monte Carlo methods, Hoboken, NJ: John Wiley & Sons.
[65] Kebaier, A. (2005). Statistical romberg extrapolation: A new variance reduction method and applications to option pricing. The Annals of Applied Probability, 15(4), 2681-2705. · Zbl 1099.65011
[66] Khan, J., Kani, N., & Elsheikh, A. H. (2019). A machine learning based hybrid multi‐ fidelity multi‐level Monte Carlo method for uncertainty quantification. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2019.00105 · doi:10.3389/fenvs.2019.00105
[67] Kuo, F., Scheichl, R., Schwab, C., Sloan, I., & Ullmann, E. (2017). Multilevel quasi‐ Monte Carlo methods for lognormal diffusion problems. Mathematics of Computation, 86(308), 2827-2860. · Zbl 1368.65005
[68] Le Ma^ıtre, O., & Knio, O. M. (2010). Spectral methods for uncertainty quantification: With applications to computational fluid dynamics, Berlin/Heidelberg, Germany: Springer Science & Business Media. · Zbl 1193.76003
[69] Liu, J. S., & Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association, 93(443), 1032-1044. · Zbl 1064.65500
[70] Liu, X., Zhang, J., Yin, J., Bi, S., Eisenbach, M., & Wang, Y. (2021). Monte Carlo simulation of order‐disorder transition in refractory high entropy alloys: A data‐driven approach. Computational Materials Science, 187, 110135.
[71] Manouchehrynia, R., Abdullah, S., & Singh Karam Singh, S. (2020). Fatigue reliability assessment of an automobile coil spring under random strain loads using probabilistic technique. Metals, 10(1), 12.
[72] Marelli, S., & Sudret, B. (2014). UQLab: A framework for uncertainty quantification in Matlab. In Vulnerability, uncertainty, and risk: Quantification, mitigation, and management (pp. 2554-2563). Reston, VA: American Society of Civil Engineers (ASCE).
[73] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087-1092. · Zbl 1431.65006
[74] Najm, H. N., Debusschere, B. J., Marzouk, Y. M., Widmer, S., & Le Maître, O. (2009). Uncertainty quantification in chemical systems. International Journal for Numerical Methods in Engineering, 80(6-7), 789-814. · Zbl 1176.92059
[75] Ng, L. W., & Willcox, K. E. (2014). Multifidelity approaches for optimization under un‐ certainty. International Journal for Numerical Methods in Engineering, 100(10), 746-772. · Zbl 1352.74230
[76] Niederreiter, H. (1978). Quasi‐Monte Carlo methods and pseudo‐random numbers. Bulletin of the American Mathematical Society, 84(6), 957-1041. · Zbl 0404.65003
[77] Niederreiter, H. (1992). Random number generation and Quasi‐Monte Carlo methods (Vol. 63), Philadelphia, PA: SIAM. · Zbl 0761.65002
[78] Olivier, A., Giovanis, D., Aakash, B., Chauhan, M., Vandanapu, L., & Shields, M. (2020). UQpy: A general purpose python package and development environment for uncertainty quantification. Journal of Computational Science, 47, 101204.
[79] Oppenheimer, M., Little, C. M., & Cooke, R. M. (2016). Expert judgement and uncertainty quantification for climate change. Nature Climate Change, 6(5), 445-451.
[80] Owen, A. B. (2013). Monte Carlo theory, methods and examples. Retrieved from https://statweb.stanford.edu/owen/mc/
[81] Pang, G., Perdikaris, P., Cai, W., & Karniadakis, G. E. (2017). Discovering variable fractional orders of advection-dispersion equations from field data using multi‐fidelity bayesian optimization. Journal of Computational Physics, 348, 694-714. · Zbl 1419.62499
[82] Park, C., Haftka, R. T., & Kim, N. H. (2017). Remarks on multi‐fidelity surrogates. Structural and Multidisciplinary Optimization, 55(3), 1029-1050.
[83] Parussini, L., Venturi, D., Perdikaris, P., & Karniadakis, G. E. (2017). Multi‐fidelity gaussian process regression for prediction of random fields. Journal of Computational Physics, 336, 36-50. · Zbl 1419.62272
[84] Pasupathy, R., Schmeiser, B. W., Taaffe, M. R., & Wang, J. (2012). Control‐variate estimation using estimated control means. IIE Transactions, 44(5), 381-385.
[85] Peherstorfer, B. (2019). Multifidelity Monte Carlo estimation with adaptive low‐fidelity models. SIAM/ASA Journal on Uncertainty Quantification, 7(2), 579-603. · Zbl 1428.35570
[86] Peherstorfer, B., Cui, T., Marzouk, Y., & Willcox, K. (2016). Multifidelity importance sampling. Computer Methods in Applied Mechanics and Engineering, 300, 490-509. · Zbl 1426.62087
[87] Peherstorfer, B., Kramer, B., & Willcox, K. (2017). Combining multiple surrogate models to accelerate failure probability estimation with expensive high‐fidelity models. Journal of Computational Physics, 341, 61-75. · Zbl 1376.93020
[88] Peherstorfer, B., Kramer, B., & Willcox, K. (2018). Multifidelity preconditioning of the cross‐entropy method for rare event simulation and failure probability estimation. SIAM/ASA Journal on Uncertainty Quantification, 6(2), 737-761. · Zbl 1394.35493
[89] Peherstorfer, B., & Willcox, K. (2016). Data‐driven operator inference for nonintrusive projection‐based model reduction. Computer Methods in Applied Mechanics and Engineering, 306, 196-215. · Zbl 1436.93062
[90] Peherstorfer, B., Willcox, K., & Gunzburger, M. (2016). Optimal model management for multifidelity Monte Carlo estimation. SIAM Journal on Scientific Computing, 38(5), A3163-A3194. · Zbl 1351.65009
[91] Peherstorfer, B., Willcox, K., & Gunzburger, M. (2018). Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Review, 60(3), 550-591. · Zbl 1458.65003
[92] Peng, X., Liu, Z., Xu, X., Li, J., Qiu, C., & Jiang, S. (2018). Nonparametric uncertainty representation method with different insufficient data from two sources. Structural and Multidisciplinary Optimization, 58(5), 1947-1960.
[93] Perdikaris, P., Venturi, D., & Karniadakis, G. E. (2016). Multifidelity information fusion algorithms for high‐dimensional systems and massive data sets. SIAM Journal on Scientific Computing, 38(4), B521-B538. · Zbl 1342.62110
[94] Perdikaris, P., Venturi, D., Royset, J. O., & Karniadakis, G. E. (2015). Multi‐fidelity modelling via recursive co‐kriging and Gaussian-Markov random fields. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2179), 20150018.
[95] Pisaroni, M., Krumscheid, S., & Nobile, F. (2020). Quantifying uncertain system outputs via the multilevel Monte Carlo method, Part I: Central moment estimation. Journal of Computational Physics, 414, 109466. · Zbl 1440.65008
[96] Pisaroni, M., Nobile, F., & Leyland, P. (2017). A continuation multilevel Monte Carlo (C‐ MLMC) method for uncertainty quantification in compressible inviscid aerodynamics. Computer Methods in Applied Mechanics and Engineering, 326, 20-50. · Zbl 1439.76135
[97] Qian, E., Peherstorfer, B., O’Malley, D., Vesselinov, V. V., & Willcox, K. (2018). Multifidelity Monte Carlo estimation of variance and sensitivity indices. SIAM/ASA Journal on Uncertainty Quantification, 6(2), 683-706. · Zbl 1394.62175
[98] Quaglino, A., Pezzuto, S., & Krause, R. (2019). High‐dimensional and higher‐order multifidelity Monte Carlo estimators. Journal of Computational Physics, 388, 300-315. · Zbl 1452.65010
[99] Rey, V., Krumscheid, S., & Nobile, F. (2019). Quantifying uncertainties in contact mechanics of rough surfaces using the multilevel Monte Carlo method. International Journal of Engineering Science, 138, 50-64. · Zbl 1425.74345
[100] Rhee, C.‐h., & Glynn, P. W. (2015). Unbiased estimation with square root convergence for sde models. Operations Research, 63(5), 1026-1043. · Zbl 1347.65016
[101] Rubinstein, R. Y., & Kroese, D. P. (2016). Simulation and the Monte Carlo method (Vol. 10), Hoboken, NJ: John Wiley & Sons. · Zbl 1352.68002
[102] Ryu, S., Kwon, Y., & Kim, W. Y. (2019). A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification. Chemical Science, 10(36), 8438-8446.
[103] Sankararaman, S., & Mahadevan, S. (2013). Distribution type uncertainty due to sparse and imprecise data. Mechanical Systems and Signal Processing, 37(1-2), 182-198.
[104] Satish, A. B., Zhang, J., Woelke, P., & Shields, M. (2017). Probabilistic calibration of material models from limited data and its influence on structural response. In Proceedings of 12th international conference on structural safety and reliability. Vienna, Austria: Tu‐verlag.
[105] Scheichl, R., Stuart, A., & Teckentrup, A. (2017). Quasi‐Monte Carlo and multilevel Monte Carlo methods for computing posterior expectations in elliptic inverse problems. SIAM/ASA Journal on Uncertainty Quantification, 5(1), 493-518. · Zbl 1516.65118
[106] Shields, M. D., & Zhang, J. (2016). The generalization of Latin hypercube sampling. Reliability Engineering & System Safety, 148, 96-108.
[107] Smith, R. C. (2013). Uncertainty quantification: Theory, implementation, and applications (Vol. 12), Philadelphia, PA: SIAM.
[108] Sofi, A., Muscolino, G., & Giunta, F. (2020). Propagation of uncertain structural proper‐ ties described by imprecise probability density functions via response surface method. Probabilistic Engineering Mechanics, 60, 103020.
[109] Soize, C. (2017). Uncertainty quantification, Berlin/Heidelberg, Germany: Springer. · Zbl 1377.60002
[110] Song, J. (2020). Stochastic simulation methods for structural reliability under mixed uncertainties. (Unpublished doctoral dissertation). Leibniz University Hannover.
[111] Song, J., Wei, P., Valdebenito, M., Bi, S., Broggi, M., Beer, M., & Lei, Z. (2019). Generalization of non‐intrusive imprecise stochastic simulation for mixed uncertain variables. Mechanical Systems and Signal Processing, 134, 106316.
[112] Stein, M. (1987). Large sample properties of simulations using Latin hypercube sampling. Technometrics, 29(2), 143-151. · Zbl 0627.62010
[113] Sullivan, T. J. (2015). Introduction to uncertainty quantification (Vol. 63), Berlin/Heidelberg, Germany: Springer. · Zbl 1336.60002
[114] Sundar, V., & Shields, M. D. (2019). Reliability analysis using adaptive kriging surrogates with multimodel inference. ASCE‐ASME Journal of Risk and Uncertainty in Engineering Systems, Part A. Civil Engineering, 5(2), 04019004.
[115] Swischuk, R., Mainini, L., Peherstorfer, B., & Willcox, K. (2019). Projection‐based model reduction: Formulations for physics‐based machine learning. Computers & Fluids, 179, 704-717. · Zbl 1411.65061
[116] Teckentrup, A. L. (2013). Multilevel Monte Carlo methods and uncertainty quantification. (Unpublished doctoral dissertation). University of Bath.
[117] Tian, K., Li, Z., Ma, X., Zhao, H., Zhang, J., & Wang, B. (2020). Toward the robust establishment of variable‐fidelity surrogate models for hierarchical stiffened shells by two‐step adaptive updating approach. Structural and Multidisciplinary Optimization, 61, 1515-1528.
[118] Troffaes, M. C. (2018). Imprecise Monte Carlo simulation and iterative importance sampling for the estimation of lower previsions. International Journal of Approximate Reasoning, 101, 31-48. · Zbl 1453.60006
[119] Walley, P. (1991). Statistical reasoning with imprecise probabilities (Vol. 42), London, England: Chapman & Hall. · Zbl 0732.62004
[120] Walley, P. (2000). Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning, 24(2-3), 125-148. · Zbl 1007.28015
[121] Walley, P., & Fine, T. L. (1982). Towards a frequentist theory of upper and lower probability. The Annals of Statistics, 10, 741-761. · Zbl 0488.62004
[122] Wang, C., Zhang, H., & Beer, M. (2018). Computing tight bounds of structural reliability under imprecise probabilistic information. Computers & Structures, 208, 92-104.
[123] Wang, Y., & McDowell, D. L. (2020). Uncertainty quantification in multiscale materials modeling, Cambridge, England: Woodhead Publishing Limited.
[124] Wang, Z., & Jia, G. (2020). Augmented sample‐based approach for efficient evaluation of risk sensitivity with respect to epistemic uncertainty in distribution parameters. Reliability Engineering & System Safety, 197, 106783.
[125] Wei, P., Liu, F., Valdebenito, M., & Beer, M. (2021). Bayesian probabilistic propagation of imprecise probabilities with large epistemic uncertainty. Mechanical Systems and Signal Processing, 149, 107219.
[126] Wei, P., Song, J., Bi, S., Broggi, M., Beer, M., Lu, Z., & Yue, Z. (2019). Non‐intrusive stochastic analysis with parameterized imprecise probability models: I. performance estimation. Mechanical Systems and Signal Processing, 124, 349-368.
[127] Weichselberger, K. (2000). The theory of interval‐probability as a unifying concept for uncertainty. International Journal of Approximate Reasoning, 24(2-3), 149-170. · Zbl 0995.68123
[128] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. · Zbl 0139.24606
[129] Zhang, J. (2018). Uncertainty quantification from small data: A multimodel approach. (Unpublished doctoral dissertation). Johns Hopkins University.
[130] Zhang, J., Liu, X., Bi, S., Yin, J., Zhang, G., & Eisenbach, M. (2020). Robust data‐driven approach for predicting the configurational energy of high entropy alloys. Materials & Design, 185, 108247.
[131] Zhang, J., & Shields, M. (2020). On the quantification and efficient propagation of imprecise probabilities with copula dependence. International Journal of Approximate Reasoning, 122, 24-46. · Zbl 1445.68225
[132] Zhang, J., Shields, M., & TerMaath, S. (2020). Probabilistic modeling and prediction of out‐ of‐plane unidirectional composite lamina properties. Mechanics of Advanced Materials and Structures, 1-17. https://doi.org/10.1080/15376494.2020.1733713 · doi:10.1080/15376494.2020.1733713
[133] Zhang, J., & Shields, M. D. (2018a). The effect of prior probabilities on quantification and propagation of imprecise probabilities resulting from small datasets. Computer Methods in Applied Mechanics and Engineering, 334, 483-506. · Zbl 1440.62099
[134] Zhang, J., & Shields, M. D. (2018b). On the quantification and efficient propagation of imprecise probabilities resulting from small datasets. Mechanical Systems and Signal Processing, 98, 465-483. · Zbl 1440.62099
[135] Zhang, J., & Shields, M. D. (2019). Efficient Monte Carlo resampling for probability measure changes from Bayesian updating. Probabilistic Engineering Mechanics, 55, 54-66.
[136] Zhang, J., TerMaath, S., & Shields, M. D. (2021). Imprecise global sensitivity analysis using Bayesian multimodel inference and importance sampling. Mechanical Systems and Signal Processing, 148, 107162.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.