×

A review of h-likelihood and hierarchical generalized linear model. (English) Zbl 07910754


MSC:

62-08 Computational methods for problems pertaining to statistics

Software:

R
Full Text: DOI

References:

[1] Andersen, E. B. (1970). Asymptotic properties of conditional maximum likelihood estimators. Journal of the Royal Statistical Society. Series B (Methodological), 32, 283-301. · Zbl 0204.51902
[2] Andersen, E. B. (1973). Conditional inference and models for measuring. Copenhagen, Denmark: Mentalhygienisk Forlag.
[3] Barndorff‐Nielsen, O. E., & Cox, D. R. (1989). Asymptotic techniques for use in statistics. London, England: Chapman and Hall. · Zbl 0672.62024
[4] Bayarri, M. J., De Groot, M. H., & Kanane, J. B. (1988). What is the likelihood function. In S. S.Gupta (ed.) & J. O.Berger (ed.) (Eds.), Statistical Desision theory and related topics IV (pp. 3-16). New York, NY: Springer. · Zbl 0684.62010
[5] Birnbaum, A. (1962). On the foundations of statistical inference (with discussion). Journal of the American Statistical Association, 57, 269-326. · Zbl 0107.36505
[6] Bj��rnstad, J. F. (1996). On the generalization of the likelihood function and likelihood principle. Journal of the American Statistical Association, 91, 791-806. · Zbl 0871.62006
[7] Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: Wiley. · Zbl 0731.62159
[8] Breslow, N. E., & Clayton, D. G. (1993). Approximate inference in generilized linear mixed models. Journal of the American Statistical Association, 88, 9-25. · Zbl 0775.62195
[9] Cao, C., Shi, J., & Lee, Y. (2017). Robust functional regression model for marginal mean and subject‐specific inferences. Statistical Methods in Medical Research, 27, 3236-3254.
[10] Cox, D. R., & Reid, N. (1987). Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society. Series B (Methodological), 49, 1-39. · Zbl 0616.62006
[11] Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B (Methodological), 39, 1-38. · Zbl 0364.62022
[12] Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society A, 222, 309-368. · JFM 48.1280.02
[13] Fisher, R. A. (1930). Inverse probability. Mathematical Proceedings of the Cambridge Philosophical Society, 26, 528-535. · JFM 56.1083.05
[14] Ghosh, M. (1995). Inconsistent maximum likelihood estimators for the rasch model. Statistics & Probability Letters, 23, 165-170. · Zbl 0819.62023
[15] Ha, I., Jeong, J. H., & Lee, Y. (2017). Statistical modelling of survival data with random effects, Singapore: . Springer. · Zbl 1464.62002
[16] Ha, I. D., & Lee, Y. (2003). Estimating frailty models via poisson hierarchical generalized models. Journal of Computational and Graphical Statistics, 12, 663-681.
[17] Ha, I. D., Noh, M., Kim, J., & Lee, Y. (2018). frailtyHL: Frailty Models via Hierarchical Likelihood. Version 2.2. Retrieved from https://cran.r-project.org/web/packages/frailtyHL/index.html.
[18] Haberman, S. J. (1977). Maximum likelihood estimates in exponential response models. The Annals of Statistics, 5, 815-841. · Zbl 0368.62019
[19] Haberman, S. J. (2004). Joint and conditional maximum likelihood estimation for Rasch model for binary responses. ETS Research report RR‐04‐20. Princeton, NJ:ETS.
[20] Jin, S., & Andersson, B. (2020). Higher order fully exponential Laplace approximations for integrals with application to the estimation of latent variable models. Unpublished manuscript. Department of Statistics, Uppsala University, Sweden.
[21] Jin, S., Noh, M., & Lee, Y. (2018). H‐likelihood approach to factor analysis for ordinal data. Accepted by Structural Equation Modeling: A Multidisciplinary Journal, 25, 541-557.
[22] Jin, S., Noh, M., & Lee, Y. (2020). Standard error estimates in hierarchical generalized linear models. Unpublished manuscript. Department of Statistics, Uppsala University, Sweden.
[23] Jin, S., Noh, M., Lee, Y., & Wallentin, F. (2020). Robust modeling of nonlinear structural equation model. Unpublished manuscript, Department of Statistics, Uppsala University, Sweden.
[24] Lee, Y., & Bjørnstad, J. F. (2013). Extended likelihood approach to large‐scale multiple testing. Journal of the Royal Statistical Society, Series B (Statistial Methodology), 75, 553-575. · Zbl 1411.62225
[25] Lee, Y., & Kim, G. (2016). H‐liklihood predictive intervals for unobservables. International Statistical Review, 84, 487-505. · Zbl 07763535
[26] Lee, Y., & Kim, G. (2019). Properties of h‐likelihood estimators in clustered data. International Statistical Review.https://doi.org/10.1111/insr.12354. · Zbl 07776804 · doi:10.1111/insr.12354
[27] Lee, Y., Molas, M., & Noh, M. (2018). mdhglm: Multivariate Double Hierarchical Generalized Linear Models. R package version 1.8. Retrieved from https://CRAN.R-project.org/package=mdhglm
[28] Lee, Y., Molas, M., & Noh, M. (2020). Mdhglm: A package for fitting multivariate double hierarchical generalized linear models with h‐likelihood. The R Journal.
[29] Lee, Y., & Nelder, J. A. (1996). Hierarchical generalized linear models. Journal of the Royal Statistical Society. Series B (Methodological), 58, 619-678. · Zbl 0880.62076
[30] Lee, Y., & Nelder, J. A. (2001). Hierarchical generalised linear models: A synthesis of generalised linear models, random‐effect models and structured dispersions. Biometrika, 88, 987-1006. · Zbl 0995.62066
[31] Lee, Y., & Nelder, J. A. (2003). Extended‐REML estimators. Journal of Applied Statistics, 38, 845-856. · Zbl 1121.62424
[32] Lee, Y., & Nelder, J. A. (2005). Likelihood for random‐effect models. Statistics and Operations Research Transactions, 29, 141-164. · Zbl 1274.62170
[33] Lee, Y., & Nelder, J. A. (2006). Double hierarchical generalized linear models (with discussion). Journal of the Royal Statistical Society: Applied Statistics (Series C), 55, 139-185. · Zbl 1490.62198
[34] Lee, Y., & Nelder, J. A. (2009). Likelihood inference for models with unobservables: Another view. Statistical Science, 24, 255-269. · Zbl 1329.62337
[35] Lee, Y., Nelder, J. A., & Pawitan, Y. (2006). Generalized linear models with random effects: Unified analysis via H‐likelihood. Boca Raton, FL: Chapman and Hall. · Zbl 1110.62092
[36] Lee, Y., Nelder, J. A., & Pawitan, Y. (2017). Generalized linear models with random effects: Unified analysis via H‐likelihood (2nd ed.). Boca Raton, FL: Chapman and Hall. · Zbl 1376.62005
[37] Lee, Y., & Noh, M. (2012). Modeling ranndom effect variance with double hierarchical generalized linear models. Statistical Modelling, 12, 487-502. · Zbl 07257889
[38] Lee, Y., & Noh, M. (2018). dhglm: Double Hierarchical Generalized Linear Models. R package version 2.0. Retrieved from https://CRAN.R-project.org/package=dhglm.
[39] Lee, Y., & Oh, H. (2014). A new sparse variable selection via random‐effect model. Journal of Multivariate Analysis, 125, 89-99. · Zbl 1280.62026
[40] Lee, Y., Ronnegard, L., & Noh, M. (2017). Data analysis using hierarchical generalized linear models with R, Boca Raton, FL: Chapman and Hall. · Zbl 1369.62002
[41] Liang, K. Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13-22. · Zbl 0595.62110
[42] Liu, Q., & Pierce, D. A. (1994). A note on gauss‐hermite quadrature. Biometrika, 81, 624-629. · Zbl 0813.65053
[43] Louis, T. A. (1982). Finding the observed information matrix when using the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 44, 226-233. · Zbl 0488.62018
[44] McCullagh, P., & Nelder, J. (1989). Generalized linear models (2nd ed.). Boca Raton, FL: Chapman and Hall. · Zbl 0744.62098
[45] Meng, X. (2009). Decoding the h‐likelihood. Statistical Science, 24, 280-293. · Zbl 1329.62340
[46] Nelder, J., & Wedderburn, R. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135, 370-384.
[47] Noh, M., & Lee, Y. (2007). REML estimation for binary data in GLMMs. Journal of Multivariate Analysis, 98, 896-915. · Zbl 1113.62087
[48] Noh, M., & Lee, Y. (2008). Hierarchical‐likelihood approach for nonlinear mixed‐effects models. Computational Statistics and Data Analysis, 52, 3517-3527. · Zbl 1452.62544
[49] Paik, M. C., Lee, Y., & Ha, I. D. (2015). Frequentist inference on random effects based on summarizability. Statistica Sinica, 25, 1107-1132. · Zbl 1415.62056
[50] Pawitan, Y., & Lee, Y. (2020). Confidence as likelihood. Statistical Science.
[51] Pinheiro, J. C., & Bates, D. M. (1995). Approximations to the log‐likelihood function in the nonlinear mixed‐effects model. Journal of Computational and Graphical Statistics, 4, 12-35.
[52] Pinheiro, J. C., & Chao, E. C. (2006). Efficient laplacian and adaptive gaussian quadrature algorithms for multilevel generalized linear mixed models. Journal of Computational and Graphical Statistics, 15, 58-81.
[53] R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
[54] Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen, Denmark: Danish Institute for Educational Research.
[55] Rönnegård, L., Shen, X., & Alam, M. (2010). Hglm: A package for fitting hierarchical generalized linear models. The R Journal, 2, 20-28.
[56] Shun, Z., & McCullagh, P. (1995). Laplace approximation of high dimensional integrals. Journal of the Royal Statistical Society, Series B (Methodological), 57, 749-760. · Zbl 0826.41026
[57] Tierney, L., Kass, R. E., & Kadane, J. B. (1989). Fully exponential Laplace approximations to expectations and variances of nonpositive functions. Journal of the American Statistical Association, 84, 710-716. · Zbl 0682.62012
[58] Vaida, F., & Blanchard, S. (2005). Conditional akaike information for mixed‐effects models. Biometrika, 92, 351-370. · Zbl 1094.62077
[59] Wang, Z., Shi, J. Q., & Lee, Y. (2017). Extended t‐process regression models. Journal of Statistical Planning and Inference, 189, 38-60. · Zbl 1376.62026
[60] Wei, G. C. G., & Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. Journal of the American Statistical Association, 85, 699-704.
[61] Wu, J., & Bentler, P. M. (2012). Application of H‐likelihood to factor analysis models with binary response data. Journal of Multivariate Analysis, 106, 72-79. · Zbl 1236.62064
[62] Xie, M., & Singh, K. (2013). Confidence distribution, the frequentist distribution estimator of a parameter: A review. International Statistical Review, 81, 3-39. · Zbl 1416.62170
[63] Yun, S., & Lee, Y. (2004). Comparison of hierarchical and marginal likelihood estimators for binary outcomes. Computational Statistics and Data Analysis, 45, 639-650. · Zbl 1429.62331
[64] Yun, S.‐C., Lee, Y., & Kenward, M. G. (2007). Using hierarchical likelihood for missing data problems. Biometrika, 94, 905-919. · Zbl 1156.62014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.