×

Fitting epidemic models to data: a tutorial in memory of Fred Brauer. (English) Zbl 07909986

Summary: Fred Brauer was an eminent mathematician who studied dynamical systems, especially differential equations. He made many contributions to mathematical epidemiology, a field that is strongly connected to data, but he always chose to avoid data analysis. Nevertheless, he recognized that fitting models to data is usually necessary when attempting to apply infectious disease transmission models to real public health problems. He was curious to know how one goes about fitting dynamical models to data, and why it can be hard. Initially in response to Fred’s questions, we developed a user-friendly R package, fitode, that facilitates fitting ordinary differential equations to observed time series. Here, we use this package to provide a brief tutorial introduction to fitting compartmental epidemic models to a single observed time series. We assume that, like Fred, the reader is familiar with dynamical systems from a mathematical perspective, but has limited experience with statistical methodology or optimization techniques.

MSC:

92D30 Epidemiology
34C60 Qualitative investigation and simulation of ordinary differential equation models

Software:

epimdr2
Full Text: DOI

References:

[1] Anderson, RM; May, RM, Infectious diseases of humans: dynamics and control, 1991, Oxford: Oxford University Press, Oxford · doi:10.1093/oso/9780198545996.001.0001
[2] Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis. Lecture Notes in Statistics, vol 151. Springer, New York · Zbl 0951.92021
[3] Bacaër, N., The model of Kermack and McKendrick for the plague epidemic in Bombay and the type reproduction number with seasonality, J Math Biol, 64, 3, 403-422, 2012 · Zbl 1284.92099 · doi:10.1007/s00285-011-0417-5
[4] Bailey, NTJ, The mathematical theory of infectious diseases and its applications, 1975, New York: Hafner Press, New York · Zbl 0334.92024
[5] Bartlett MS (1960) Stochastic population models in ecology and epidemiology, vol. 4 of Methuen’s Monographs on Applied Probability and Statistics. Spottiswoode, Ballantyne & Co. Ltd., London · Zbl 0096.13702
[6] Batista AA, da Silva SH (2022) An epidemiological compartmental model with automated parameter estimation and forecasting of the spread of COVID-19 with analysis of data from Germany and Brazil. Front Appl Math Stat 8. ISSN 2297-4687. doi:10.3389/fams.2022.645614
[7] Bjørnstad ON (2018) Epidemics: models and data using R, 1st ed. Springer, New York. ISBN 978-3-319-97486-6 · Zbl 1407.92001
[8] Bolker B (2024) Multimodel approaches are not the best way to understand multi factorial systems. Entropy 26(6):e26060506. doi:10.3390/e26060506
[9] Bolker BM (2008) Ecological models and data in R. Princeton University Press · Zbl 1166.62088
[10] Bolker BM, Gardner B, Maunder M, Berg CW, Brooks M, Comita L, Crone E, Cubaynes S, Davies T, de Valpine P, Ford J, Gimenez O, Kéry M, Kim EJ, Lennert-Cody C, Magnusson A, Martell S, Nash J, Nielsen A, Regetz J, Skaug H, Zipkin E (2013) Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS. Methods in Ecology and Evolution, 4(6):501-512. ISSN 2041210X. doi:10.1111/2041-210X.12044
[11] Brauer F, Castillo-Chavez C (2001) Mathematical models in population biology and epidemiology. Texts in Applied Mathematics, vol 40. Springer, New York · Zbl 0967.92015
[12] Brauer F, Kribs C (2016) Dynamical systems for biological modeling: an introduction. CRC Press · Zbl 1336.92001
[13] Brauer F, Castillo-Chavez C, Feng Z (2019) Mathematical models in epidemiology, vol. 32. Springer · Zbl 1433.92001
[14] Brooks ME, Kristensen K, Darrigo MR, Rubim P, Uriarte M, Bruna E, Bolker BM (2019) Statistical modeling of patterns in annual reproductive rates. Ecology, 100 (7): e02706. ISSN 1939-9170. doi:10.1002/ecy.2706
[15] Brooks-Pollock, E.; Danon, L.; Jombart, T.; Pellis, L., Modelling that shaped the early COVID-19 pandemic response in the UK, Philos Trans R Soc B, 376, 1829, 20210001, 2021 · doi:10.1098/rstb.2021.0001
[16] Burnham, KP; Anderson, DR, Model selection and multimodel inference: a practical information-theoretic approach, 2002, New York: Springer, New York · Zbl 1005.62007
[17] Campbell-Kelly, M., Origin of computing, Sci Am, 301, 3, 62-69, 2009 · doi:10.1038/scientificamerican0909-62
[18] Champredon, D.; Dushoff, J., Intrinsic and realized generation intervals in infectious-disease transmission, Proc R Soc B: Biol Sci, 282, 1821, 20152026, 2015 · doi:10.1098/rspb.2015.2026
[19] Champredon, D.; Dushoff, J.; Earn, DJD, Equivalence of the Erlang SEIR epidemic model and the renewal equation, SIAM J Appl Math, 78, 6, 3258-3278, 2018 · Zbl 1404.92173 · doi:10.1137/18M1186411
[20] Chowell G (2017) Fitting dynamic models to epidemic outbreaks with quantified uncertainty: a primer for parameter uncertainty, identifiability, and forecasts. Infect Dis Model 2(3):379-398. ISSN 2468-0427. doi:10.1016/j.idm.2017.08.001
[21] Chowell G, Dahal S, Liyanage YR, Tariq A, Tuncer N (2023) Structural identifiability analysis of epidemic models based on differential equations: A tutorial-based primer. J Math Biol 87(6):79. ISSN 1432-1416. doi:10.1007/s00285-023-02007-2 · Zbl 1532.92089
[22] Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley Series in Mathematical and Computational Biology. Wiley, New York
[23] Dorfman, RA, A note on the \(\delta \)-method for finding variance formulae, Biom Bull, 1, 129-137, 1938
[24] Earn DJD (2008) A Light Introduction to modelling recurrent epidemics. In: Brauer F, van den Driessche P, Wu J (eds) Mathematical Epidemiology, volume 1945 of Lecture Notes in Mathematics. Springer, pp 3-17. doi:10.1007/978-3-540-78911-6_1 · Zbl 1208.92064
[25] Earn DJD (2009) Mathematical epidemiology of infectious diseases. In: Lewis MA, Chaplain MAJ, Keener JP, Maini PK (eds), Mathematical Biology, vol. 14 of IAS/Park City Mathematics Series, pp 151-186. American Mathematical Society. doi:10.1090/pcms/014/05 · Zbl 1352.92151
[26] Earn DJD, Rohani P, Bolker BM, Grenfell BT (2000) A simple model for complex dynamical transitions in epidemics. Science 287(5453):667-670. doi:10.1126/science.287.5453.667
[27] Earn, DJD; Dushoff, J.; Levin, SA, Ecology and evolution of the flu, Trends Ecol Evol, 17, 7, 334-340, 2002 · doi:10.1016/S0169-5347(02)02502-8
[28] Earn DJD, Ma J, Poinar H, Dushoff J, Bolker BM (2020) Acceleration of plague outbreaks in the second pandemic. Proc Natl Acad Sci USA 117(44):27703-27711. doi:10.1073/pnas.2004904117
[29] Eichel OR (1923) A special report on the mortality from influenza in New York state during the epidemic of 1918-1919. New York State Department of Health, Albany, NY
[30] Elderd, BD; Dukic, VM; Dwyer, G., Uncertainty in predictions of disease spread and public health responses to bioterrorism and emerging diseases, Proc Natl Acad Sci, 103, 42, 15693-15697, 2006 · doi:10.1073/pnas.0600816103
[31] Ethier, SN; Kurtz, TG, Markov processes: characterization and convergence, 1986, New York: Wiley, New York · Zbl 0592.60049 · doi:10.1002/9780470316658
[32] Eubank, S.; Guclu, H.; Anil Kumar, V.; Marathe, MV; Srinivasan, A.; Toroczkai, Z.; Wang, N., Modelling disease outbreaks in realistic urban social networks, Nature, 429, 6988, 180-184, 2004 · doi:10.1038/nature02541
[33] FitzJohn R, Baguelin M, Knock E, Whittles L, Lees J, Sonabend R (2024) mcstate: Monte Carlo methods for state space models. https://github.com/mrc-ide/mcstate. R package version 0.9.20
[34] Frost, WH, Statistics of influenza morbidity: with special reference to certain factors in case incidence and case fatality, Public Health Rep, 35, 584-597, 1920 · doi:10.2307/4575511
[35] Gallo L, Frasca M, Latora V, Russo G (2022) Lack of practical identifiability may hamper reliable predictions in COVID-19 epidemic models. Sci Adv 8(3):eabg5234.doi:10.1126/sciadv.abg5234
[36] Gillespie, DT, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J Comput Phys, 22, 403-434, 1976 · doi:10.1016/0021-9991(76)90041-3
[37] Gillespie, DT, Approximate accelerated stochastic simulation of chemically reacting systems, J Chem Phys, 115, 4, 1716-1733, 2001 · doi:10.1063/1.1378322
[38] Goldstein E, Dushoff J, Ma J, Plotkin J, Earn DJD, Lipsitch M (2009) Reconstructing influenza incidence by deconvolution of daily mortality time series. Proc Natl Acad Sci USA 106(51):21825-21829. doi:10.1073/pnas.0902958106
[39] Grinsztajn, L.; Semenova, E.; Margossian, CC; Riou, J., Bayesian workflow for disease transmission modeling in Stan, Stat Med, 40, 27, 6209-6234, 2021 · doi:10.1002/sim.9164
[40] Gupta N (2023) On the Calibration of Compartmental epidemiological models. Master’s thesis, New York University Tandon School of Engineering, United States, New York. https://www.proquest.com/docview/2820207706/abstract/C69EF306BFF041E0PQ/1. ISBN: 9798379583248
[41] He, D.; Earn, DJD, Epidemiological effects of seasonal oscillations in birth rates, Theor Popul Biol, 72, 274-291, 2007 · Zbl 1122.92057 · doi:10.1016/j.tpb.2007.04.004
[42] He, D.; Earn, DJD, The cohort effect in childhood disease dynamics, J R Soc Lond Interface, 13, 20160156, 2016 · doi:10.1098/rsif.2016.0156
[43] He, D.; Dushoff, J.; Day, T.; Ma, J.; Earn, DJD, Inferring the causes of the three waves of the 1918 influenza pandemic in England and Wales, Proc R Soc Lond Ser B, 280, 1766, 20131345, 2013 · doi:10.1098/rspb.2013.1345
[44] Hethcote, HW, The mathematics of infectious diseases, SIAM Rev, 42, 4, 599-653, 2000 · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[45] Hillmer, MP; Feng, P.; McLaughlin, JR; Murty, VK; Sander, B.; Greenberg, A.; Brown, AD, Ontario’s COVID-19 modelling consensus table: mobilizing scientific expertise to support pandemic response, Can J Public Health, 112, 5, 799-806, 2021 · doi:10.17269/s41997-021-00559-8
[46] Howerton, E.; Contamin, L.; Mullany, LC; Qin, M.; Reich, NG; Bents, S.; Borchering, RK; Jung, S-M; Loo, SL; Smith, CP, Evaluation of the US COVID-19 scenario modeling hub for informing pandemic response under uncertainty, Nat Commun, 14, 1, 7260, 2023 · doi:10.1038/s41467-023-42680-x
[47] Johnson P (2023) Adaptivetau: tau-leaping stochastic simulation. https://CRAN.R-project.org/package=adaptivetau. R package version 2.3. doi:10.32614/CRAN.package.adaptivetau
[48] Kermack, WO; McKendrick, AG, A contribution to the mathematical theory of epidemics, Proc R Soc Lond Ser A, 115, 700-721, 1927 · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[49] Kim T, Lieberman B, Luta G, Peña EA (2022) Prediction intervals for Poisson-based regression models. WIREs Comput Stat 14(5):e1568. ISSN 1939-0068. doi:10.1002/wics.1568 · Zbl 07910983
[50] King AA, de Cellès MD, Magpantay FMG, Rohani P (2015) Avoidable errors in the modelling of outbreaks of emerging pathogens, with special reference to Ebola. Proc R Soc B, 282(1806):20150347. ISSN 0962-8452:1471-2954. doi:10.1098/rspb.2015.0347
[51] King AA, Nguyen D, Ionides EL (2016) Statistical inference for partially observed Markov processes via the R package pomp. J Stat Softw 69(12):1-43. doi:10.18637/jss.v069.i12
[52] Kribs, CM; van den Driessche, P., Honoring the life and legacy of Fred Brauer, J Biol Dyn, 17, 1, 2285096, 2023 · Zbl 1536.01026 · doi:10.1080/17513758.2023.2285096
[53] Krylova, O.; Earn, DJD, Effects of the infectious period distribution on predicted transitions in childhood disease dynamics, J R Soc Lond Interface, 10, 20130098, 2013 · doi:10.1098/rsif.2013.0098
[54] Lemoine NP (2019) Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. Oikos 128(7):912-928. ISSN 1600-0706. doi:10.1111/oik.05985
[55] Li, M.; Dushoff, J.; Bolker, BM, Fitting mechanistic epidemic models to data: a comparison of simple markov chain monte carlo approaches, Statist Methods Med Res, 27, 7, 1956-1967, 2018 · doi:10.1177/0962280217747054
[56] Lindén, A.; Mäntyniemi, S., Using the negative binomial distribution to model overdispersion in ecological count data, Ecology, 92, 7, 1414-1421, 2011 · doi:10.1890/10-1831.1
[57] London, W.; Yorke, JA, Recurrent outbreaks of measles, chickenpox and mumps. I. Seasonal variation in contact rates, Am J Epidemiol, 98, 6, 453-468, 1973 · doi:10.1093/oxfordjournals.aje.a121575
[58] McKendrick, AG, Applications of mathematics to medical problems, Proc Edinb Math Soc, 13, 98-130, 1926 · JFM 52.0542.04
[59] Nixon, K.; Jindal, S.; Parker, F.; Reich, NG; Ghobadi, K.; Lee, EC; Truelove, S.; Gardner, L., An evaluation of prospective COVID-19 modelling studies in the USA: from data to science translation, Lancet Digital Health, 4, 10, e738-e747, 2022 · doi:10.1016/S2589-7500(22)00148-0
[60] Nourbakhsh S, Fazil A, Li M, Mangat CS, Peterson SW, Daigle J, Langner S, Shurgold J, D’Aoust P, Delatolla R, Mercier E, Pang X, Lee BE, Stuart R, Wijayasri S, Champredon D (2022) A wastewater-based epidemic model for SARS-CoV-2 with application to three Canadian cities. Epidemics 39:100560. ISSN 1755-4365. doi:10.1016/j.epidem.2022.100560
[61] Papst, I.; Earn, DJD, Invariant predictions of epidemic patterns from radically different forms of seasonal forcing, J R Soc Lond Interface, 16, 20190202, 2019 · doi:10.1098/rsif.2019.0202
[62] Parsons T, Bolker BM, Dushoff J, Earn DJD (2024) The probability of epidemic burnout in the stochastic SIR model with vital dynamics. Proc Natl Acad Sci USA 121(5):e2313708120. doi:10.1073/pnas.2313708120
[63] Pybus, OG; Charleston, MA; Gupta, S.; Rambaut, A.; Holmes, EC; Harvey, PH, The epidemic behavior of the hepatitis C virus, Science, 292, 5525, 2323-2325, 2001 · doi:10.1126/science.1058321
[64] Raue, A.; Schilling, M.; Bachmann, J.; Matteson, A.; Schelke, M.; Kaschek, D.; Hug, S.; Kreutz, C.; Harms, BD; Theis, FJ; Klingmüller, U.; Timmer, J., Lessons learned from quantitative dynamical modeling in systems biology, PLOS ONE, 8, 9, 2013 · doi:10.1371/journal.pone.0074335
[65] Roberts, M.; Heesterbeek, J., Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection, J Math Biol, 55, 5, 803-816, 2007 · Zbl 1145.92337 · doi:10.1007/s00285-007-0112-8
[66] Rogers SL (1920) Special tables of mortality from influenza and pneumonia, in Indiana, Kansas, and Philadelphia. PA. Department of Commerce, Bureau of the Census, Washington, DC
[67] Rosati, DP; Woolhouse, MH; Bolker, BM; Earn, DJD, Modelling song popularity as a contagious process, Proc R Soc Lond Ser A, 477, 20210457, 2021 · doi:10.1098/rspa.2021.0457
[68] Taubenberger, JK; Morens, DM, 1918 influenza: the mother of all pandemics, Emerg Infect Dis, 12, 1, 15-22, 2006 · doi:10.3201/eid1209.05-0979
[69] Taylor, BP; Dushoff, J.; Weitz, JS, Stochasticity and the limits to confidence when estimating \(R_0\) of Ebola and other emerging infectious diseases, J Theor Biol, 408, 145-154, 2016 · Zbl 1352.92171 · doi:10.1016/j.jtbi.2016.08.016
[70] The Advisory Committee Appointed by the Secretary of State for India, The Royal Society, and the Lister Institute (1907). Reports on Plague Investigations in India. J Hygiene 7(6):693-985. http://www.jstor.org/stable/4619420
[71] Tuncer N, Le TT (2018) Structural and practical identifiability analysis of outbreak models. Math Biosci 299:1-18. ISSN 0025-5564. doi:10.1016/j.mbs.2018.02.004 · Zbl 1393.92053
[72] Ver Hoef, JM, Who invented the delta method?, Am Stat, 66, 2, 124-127, 2012 · Zbl 07649009 · doi:10.1080/00031305.2012.687494
[73] Wallinga, J.; Lipsitch, M., How generation intervals shape the relationship between growth rates and reproductive numbers, Proc R Soc B: Biol Sci, 274, 1609, 599-604, 2007 · doi:10.1098/rspb.2006.3754
[74] Wasserman, L., All of statistics: a concise course in statistical inference, 2010, New York: Springer, New York
[75] Zha W, Zhou N, Li G, Li W, Zhang H, Zhang S, Chen M, Feng R, Li T, LV Y (2020) Assessment and forecasting the spread of SARS-CoV-2 outbreak in Changsha, China: based on a SEIAR dynamic model. https://www.researchsquare.com/article/rs-16659/v1. ISSN: 2693-5015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.