×

Analysis of shape data: from landmarks to elastic curves. (English) Zbl 07909792


MSC:

62-08 Computational methods for problems pertaining to statistics
Full Text: DOI

References:

[1] Almhdie, A., Léger, C., Deriche, M., & Lédée, R. (2007). 3D registration using a new implementation of the ICP algorithm based on a comprehensive lookup matrix: Application to medical imaging. Pattern Recognition Letters, 28(12), 1523-1533.
[2] Bardelli, E., & Mennucci, A. C. G. (2017). Probability measures on infinite‐dimensional Stiefel manifolds. Journal of Geometric Mechanics, 9, 291-316. · Zbl 1373.60022
[3] Bauer, M., Bruveris, M., Charon, N., & Moller‐Andersen, J. (2019). A relaxed approach for curve matching with elastic metrics. ESAIM: Control, Optimisation and Calculus of Variations, 25 (in press). · Zbl 07194611
[4] Bauer, M., Eslitzbichler, M., & Grasmair, M. (2017). Landmark‐guided elastic shape analysis of human character motions. Inverse Problems & Imaging, 11(4), 601-621. · Zbl 1368.65028
[5] Beg, M., Miller, M., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2), 139-157. · Zbl 1477.68459
[6] Bharath, K., & Kurtek, S. (2019). Distribution on warp maps for alignment of closed and open curves. Journal of the American Statistical Association, 1708, 04891.
[7] Bharath, K., Kurtek, S., Rao, A., & Baladandayuthapani, V. (2018). Radiologic image‐based statistical shape analysis of brain tumours. Journal of the Royal Statistical Society, Series C, 67(5), 1357-1378.
[8] Bhattacharya, A. & Bhattacharya, R. (2012). Nonparametric inference on manifolds: With applications to shape spaces. IMS monographs. · Zbl 1273.62014
[9] Bookstein, F. L. (1984). A statistical method for biological shape comparisons. Journal of Theoretical Biology, 107(3), 475-520.
[10] Bookstein, F. L. (1992). Morphometric tools for landmark data: Geometry and biology. Cambridge, MA: Cambridge University Press. · Zbl 0770.92001
[11] Bookstein, F. L. (1996). Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology, 58(2), 313-365. · Zbl 0855.92002
[12] Boothby, W. M. (1975). An introduction to differentiable manifolds and Riemannian geometry. In Pure and Applied Mathematics. Astermdam: Elsevier Science. · Zbl 0333.53001
[13] Bouix, S., Pruessner, J. C., Collins, D. L., & Siddiqi, K. (2001). Hippocampal shape analysis using medial surfaces. NeuroImage, 25, 1077-1089. · Zbl 1041.68567
[14] Charon, N., & Truové, A. (2013). The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM Journal of Imaging Science, 6(4), 2547-2580. · Zbl 1279.68313
[15] Cheng, W., Dryden, I. L., & Huang, X. (2016). Bayesian registration of functions and curves. Bayesian Analysis, 11(2), 447-475. · Zbl 1357.62151
[16] Cho, M.‐H., Asiaee, A., & Kurtek, S. (2019). Elastic statistical shape analysis of biological structures with case studies: A tutorial. Bulletin of Mathematical Biology, 81(7), 2052-2073. · Zbl 1417.92016
[17] Crawford, L., Monod, A., Chen, A. X., Mukherjee, S., & Rabadán, R. (2019). Functional data analysis using a topological summary statistic: The smooth Euler characteristic transform. arXiv:1611.06818v4.
[18] doCarmo, M. P. (1992). Riemannian geometry. Basel: Birkhäuser.
[19] Dryden, I. L., & Mardia, K. V. (1993). Multivariate shape analysis. Sankhya, Series A, 55(3), 460-480. · Zbl 0806.62050
[20] Dryden, I. L., & Mardia, K. V. (2016). Statistical shape analysis: With applications in R (2nd ed.). New York, NY: Wiley. · Zbl 1381.62003
[21] Durrleman, S., Pennec, X., Trouvé, A., & Ayache, N. (2009). Statistical models of sets of curves and surfaces based on currents. Medical Image Analysis, 13(5), 793-808.
[22] Fletcher, P. T., Lu, C., Pizer, S. M., & Joshi, S. C. (2004). Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging, 23(8), 995-1005.
[23] Fletcher, P. T., Venkatasubramanian, S., & Joshi, S. (2009). The geometric median on Riemannian manifolds with application to robust atlas estimation. NeuroImage, 45(1), S143-S152.
[24] Glaunès, J., Qiu, A., Miller, M. I., & Younes, L. (2008). Large deformation diffeomorphic metric curve mapping. International Journal of Computer Vision, 80(3), 317-336. · Zbl 1477.68471
[25] Glaunès, J., Vaillant, M., & Miller, M. I. (2004). Landmark matching via large deformation diffeomorphisms on the sphere. Journal of Mathematical Imaging and Vision, 20(1), 179-200. · Zbl 1366.94052
[26] Gorczowski, K., Styner, M., Jeong, J. Y., Marron, J. S., Piven, J., Hazlett, H. C., … Gerig, G. (2010). Multi‐object analysis of volume, pose, and shape using statistical discrimination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(4), 652-666.
[27] Grenander, U., & Miller, M. I. (1998). Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics, LVI, 4, 617-694. · Zbl 0952.92016
[28] Humeau‐Heurtier, A. (2019). Texture feature extraction methods: A survey. IEEE Access, 7, 8975-9000.
[29] Jermyn, I. H., Kurtek, S., Laga, H., & Srivastava, A. (2017). Elastic shape analysis of three‐dimensional objects. San Rafael, CA: Morgan & Claypool Publishers.
[30] Joshi, S. C., & Miller, M. I. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9(8), 1357-1370. · Zbl 0965.37065
[31] Joshi, S. C., Miller, M. I., & Grenander, U. (1997). On the geometry and shape of brain sub‐manifolds. Pattern Recognition and Artificial Intelligence, 11, 1317-1343.
[32] Joshi, S. H., Klassen, E., Srivastava, A., & Jermyn, I. H. (2007). A novel representation for Riemannian analysis of elastic curves in ℝ^n. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-7). New York, NY: IEEE.
[33] Joshi, S. H., & Srivastava, A. (2009). Intrinsic Bayesian active contours for extraction of object boundaries in images. International Journal of Computer Vision, 81(3), 331-355. · Zbl 1477.68379
[34] Kaziska, D., & Srivastava, A. (2006). Cyclostationary processes on shape spaces for gait‐based recognition. In European Conference on Computer Vision (Vol. 3952, pp. 442-453). Gratz, Austria: LNCS.
[35] Kendall, D. G. (1984). Shape manifolds, procrustean metrics and complex projective spaces. Bulletin of London Mathematical Society, 16, 81-121. · Zbl 0579.62100
[36] Klassen, E., & Srivastava, A. (2006). Geodesics between 3D closed curves using path‐straightening. In European Conference on Computer Vision (pp. 95-106). Gratz, Austria: LNCS.
[37] Klassen, E., Srivastava, A., Mio, W., & Joshi, S. H. (2004). Analysis of planar shapes using geodesic paths on shape spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(3), 372-383.
[38] Kurtek, S. (2017). A geometric approach to pairwise Bayesian alignment of functional data using importance sampling. Electronic Journal of Statistics, 11(1), 502-531. · Zbl 1362.62055
[39] Kurtek, S., Klassen, E., Ding, Z., Jacobson, S. W., Jacobson, J. L., Avison, M. J., & Srivastava, A. (2011). Parameterization‐invariant shape comparisons of anatomical surfaces. IEEE Transactions on Medical Imaging, 30(3), 849-858.
[40] Kurtek, S., & Needham, T. (2018). Simplifying transforms for general elastic metrics on the space of plane curves. arXiv:1803.10894v1.
[41] Kurtek, S., Srivastava, A., Klassen, E., & Ding, Z. (2012). Statistical modeling of curves using shapes and related features. Journal of the American Statistical Association, 107(499), 1152-1165. · Zbl 1443.62389
[42] Kurtek, S., Su, J., Grimm, C., Vaughan, M., Sowell, R., & Srivastava, A. (2013). Statistical analysis of manual segmentations of structures in medical images. Computer Vision and Image Understanding, 117, 1036-1050.
[43] Laga, H., Kurtek, S., Srivastava, A., & Miklavcic, S. J. (2014). Landmark‐free statistical analysis of the shape of plant leaves. Journal of Theoretical Biology, 363, 41-52. · Zbl 1309.92015
[44] Lang, S. (2001). Fundamentals of differential geometry. In Graduate texts in mathematics. Berlin: Springer. · Zbl 0995.53001
[45] Le, H. (2001). Locating Frechet means with application to shape spaces. Advances in Applied Probability, 33(2), 324-338. · Zbl 0990.60008
[46] Lu, Y., Herbei, R., & Kurtek, S. (2017). Bayesian registration of functions with a Gaussian process prior. Journal of Computational and Graphical Statistics, 26, 894-904.
[47] Malladi, R., Sethian, J. A., & Vemuri, B. C. (1996). A fast level set based algorithm for topology‐independent shape modeling. Journal of Mathematical Imaging and Vision, 6, 269-290. · Zbl 1490.68251
[48] Mardia, K. V., & Dryden, I. L. (1989). The statistical analysis of shape data. Biometrika, 76(2), 271-281. · Zbl 0666.62056
[49] Materka, A. (2004). Texture analysis methodologies for magnetic resonance imaging. Dialogues in Clinical Neuroscience, 6(2), 243-250.
[50] Miller, M. I., & Younes, L. (2001). Group actions, homeomorphisms, and matching: A general framework. International Journal of Computer Vision, 41(1-2), 61-84. · Zbl 1012.68714
[51] Mio, W., Srivastava, A., & Joshi, S. H. (2007). On shape of plane elastic curves. International Journal of Computer Vision, 73(3), 307-324. · Zbl 1477.68398
[52] O’Higgins, P., & Dryden, I. L. (1992). Studies of craniofacial development and evolution. Archaeology and Physical Anthropology in Oceania, 27, 105-112.
[53] Pennec, X. (2006). Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. Journal of Mathematical Imaging and Vision, 25(1), 127-154. · Zbl 1478.94072
[54] Robinson, D. T. (2012). Functional data analysis and partial shape matching in the square root velocity framework (PhD thesis). Florida State University.
[55] Samir, C., Kurtek, S., Srivastava, A., & Canis, M. (2014). Elastic shape analysis of cylindrical surfaces for 3D/2D registration in endometrial tissue characterization. IEEE Transactions on Medical Imaging, 33(5), 1035-1043.
[56] Samir, C., Srivastava, A., Daoudi, M., & Klassen, E. (2009). An intrinsic framework for analysis of facial surfaces. International Journal of Computer Vision, 82(1), 80-95.
[57] Siddiqi, K., & Pizer, S. (2008). Medial representations: Mathematics, algorithms and applications. Berlin: Springer. · Zbl 1151.00014
[58] Small, C. G. (1996). The statistical theory of shape. Berlin: Springer. · Zbl 0859.62087
[59] Srivastava, A., Klassen, E., Joshi, S. H., & Jermyn, I. H. (2011). Shape analysis of elastic curves in Euclidean spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1415-1428.
[60] Srivastava, A., & Klassen, E. P. (2016). Functional and shape data analysis. Berlin: Springer‐Verlag. · Zbl 1376.62003
[61] Srivastava, A., Samir, C., Joshi, S. H., & Daoudi, M. (2009). Elastic shape models for face analysis using curvilinear coordinates. Journal of Mathematical Imaging and Vision, 33(2), 253-265. · Zbl 1523.68164
[62] Strait, J., Chkrebtii, O., & Kurtek, S. (2019). Automatic detection and uncertainty quantification of landmarks on elastic curves. Journal of the American Statistical Association, 114, 1002-1017. https://doi.org/10.1080/01621459.2018.1527224 · Zbl 1423.68401 · doi:10.1080/01621459.2018.1527224
[63] Strait, J., Kurtek, S., Bartha, E., & MacEachern, S. N. (2017). Landmark‐constrained elastic shape analysis of planar curves. Journal of the American Statistical Association, 112(518), 521-533.
[64] Su, J., Kurtek, S., Klassen, E., & Srivastava, A. (2014). Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance. Annals of Applied Statistics, 8(1), 530-552. · Zbl 1454.62554
[65] Thompson, D. (1917). On growth and form. Cambridge, MA: Cambridge University Press.
[66] Vaillant, M., & Glaunès, J. (2005). Surface matching via currents. In Information processing in medical imaging (pp. 381-392). Berlin, Heidelberg: Springer Berlin Heidelberg.
[67] Younes, L. (1998). Computable elastic distance between shapes. SIAM Journal of Applied Mathematics, 58(2), 565-586. · Zbl 0907.68158
[68] Younes, L. (2018). Elastic distance between curves under the metamorphosis viewpoint. arXiv:1804.10155.
[69] Younes, L., Michor, P. W., Shah, J., Mumford, D., & Lincei, R. (2008). A metric on shape space with explicit geodesics. Matematica E Applicazioni, 19(1), 25-57. · Zbl 1142.58013
[70] Zahn, C. T., & Roskies, R. Z. (1972). Fourier descriptors for plane closed curves. IEEE Transactions on Computers, 21(3), 269-281. · Zbl 0231.68042
[71] Zhang, M., & Fletcher, P. T. (2013). Probabilistic principal geodesic analysis. In Neural information processing systems (pp. 1178-1186).
[72] Zhang, M., & Fletcher, P. T. (2014). Bayesian principal geodesic analysis in diffeomorphic image registration. In Medical image computing and computer‐assisted intervention (pp. 121-128). Springer International Publishing.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.