×

Adaptive synchronization of quaternion-valued neural networks with reaction-diffusion and fractional order. (English) Zbl 07908547

Summary: This paper is dedicated to the study of adaptive finite-time synchronization (FTS) for generalized delayed fractional-order reaction-diffusion quaternion-valued neural networks (GDFORDQVNN). Utilizing the suitable Lyapunov functional, Green’s formula, and inequalities skills, testable algebraic criteria for ensuring the FTS of GDFORDQVNN are established on the basis of two adaptive controllers. Moreover, the numerical examples validate that the obtained results are feasible. Furthermore, they are also verified in image encryption as the application.

MSC:

93D21 Adaptive or robust stabilization
93D40 Finite-time stability
93B70 Networked control
11R52 Quaternion and other division algebras: arithmetic, zeta functions
93C20 Control/observation systems governed by partial differential equations
35K57 Reaction-diffusion equations
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] H.B. Bao, H.P. Ju, J.D. Cao, Adaptive synchronization of fractional order memristor-based neural networks with time delay, Nonlinear Dyn., 51:143-1354, 2015, https://doi. org/10.1007/s11071-015-2242-7. · Zbl 1348.93159 · doi:10.1007/s11071-015-2242-7
[2] S.L. Chen, H.-L. Li, L. Wang, C. Hu, H. Jiang, Z. Li, Finite-time adaptive synchronization of fractional-order delayed quaternion-valued fuzzy neural networks, Nonlinear Anal. Model. Control, 28:804-823, 2023, https://doi.org/10.15388/namc.2023.28.32505. · Zbl 1529.34065 · doi:10.15388/namc.2023.28.32505
[3] W. Chen, Y.G. Yu, X.D. Hai, G.J. Ren, Adaptive quasi-synchronization control of heteroge-neous fractional-order coupled neural networks with reaction-diffusion, Appl. Math. Comput., 427:127145, 2022, https://doi.org/10.1016/j.amc.2022.127145. · Zbl 1510.93120 · doi:10.1016/j.amc.2022.127145
[4] L.O. Chua, M. Hasler, G.S. Moschytz, J. Neirynck, Autonomous cellular neural networks: A unified paradigm for pattern formation and active wave propagation, IEEE Trans. Circuits Syst., I, Fundam. Theory Appl., 42:559-577, 1995, https://doi.org/10.1109/81. 473564. · doi:10.1109/81.473564
[5] D. del Castillo-Negrete, B. Carreras, V.E. Lynch, Non-diffusive transport in plasma turbulence: A fractional diffusion approach, Phys. Rev. Lett., 94:065003, 2005, https://doi.org/ 10.1103/PHYSREVLETT.94.065003. · doi:10.1103/PHYSREVLETT.94.065003
[6] D.W. Ding, Z.R. You, Y.B. Hu, Z.L. Yang, L.H. Ding, Finite-time synchronization of delayed fractional-order quaternion-valued memristor-based neural networks, Int. J. Mod. Phys. B, 35: 2150032, 2021, https://doi.org/10.1142/s0217979221500326. · Zbl 1455.34073 · doi:10.1142/s0217979221500326
[7] Y.J. Gu, H. Wang, Y.G. Yu, Stability and synchronization of fractional-order generalized reaction-diffusion neural networks with multiple time delays and parameter mismatch, Neural Comput. Appl., 20:17905-17920, 2022, https://doi.org/10.1007/s00521-022-07414-y. · doi:10.1007/s00521-022-07414-y
[8] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. · Zbl 0998.26002
[9] X.F. Hu, L.M. Wang, Z.G. Zeng, S. Zhu, J.H. Hu, Settling-time estimation for finite-time stabilization of fractional-order quaternion-valued fuzzy NNs, IEEE Trans. Fuzzy Syst., 30: 5460-5472, 2022, https://doi.org/10.1109/TFUZZ.2022.3179130. https://www.journals.vu.lt/nonlinear-analysis · doi:10.1109/TFUZZ.2022.3179130
[10] M. Hui, C. Wei, J. Zhang, H.H.C. Iu, R. Yao, L. Bai, Finite-time synchronization of fractional-order memristive neural networks via feedback and periodically intermittent control, Commun. Nonlinear Sci. Numer. Simul., 116:106822, 2023, https://doi.org/10.1016/j. cnsns.2022.106822. · Zbl 1501.93129 · doi:10.1016/j.cnsns.2022.106822
[11] U. Kandasamy, X.D. Li, R. Rajan, Quasi-synchronization and bifurcation results onfractional-order quaternion-valued neural networks, IEEE Trans. Neural Netw. Learn. Syst., 31:4063-4072, 2020, https://doi.org/10.1109/TNNLS.2019.2951846. · doi:10.1109/TNNLS.2019.2951846
[12] X.W. Liu, T.P. Chen, Finite-time and fixed-time cluster synchronization with or without pinning control, IEEE Trans. Cybern., 48:240-252, 2018, https://doi.org/10.1109/TCYB. 2016.2630703. · doi:10.1109/TCYB.2016.2630703
[13] J.G. Lu, Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with dirichlet boundary conditions, Chaos Solitons Fractals, 31:116-125, 2008, https://doi.org/10.1016/j.chaos.2007.05.002. · Zbl 1134.35066 · doi:10.1016/j.chaos.2007.05.002
[14] Y.J. Lv, C. Hu, J. Yu, H.J. Jiang, T.W. Huang, Edge-based fractional-order adaptive strategies for synchronization of fractional-order coupled networks with reaction-diffusion terms, IEEE Trans. Cybern., 50:1582-1594, 2020, https://doi.org/10.1109/TCYB.2018. 2879935. · doi:10.1109/TCYB.2018.2879935
[15] M.M. Meerschaert, E. Scalas, Coupled continuous time random walks in finance, Physica A, 370:114-118, 2006, https://doi.org/10.1016/j.physa.2006.04.034. · doi:10.1016/j.physa.2006.04.034
[16] A. Ouannas, S. Bendoukha, C. Volos, N. Boumaza, A. Karouma, Synchronization of fractional hyperchaotic rabinovich systems via linear and nonlinear control with an application to secure communications, Int. J. Control Autom. Syst., 17:2211-2219, 2019, https://doi.org/ 10.1007/s12555-018-0216-5. · doi:10.1007/s12555-018-0216-5
[17] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. · Zbl 0918.34010
[18] R.L. Magin, Fractional Calculus in Bioengineering, Begell House, New York, 2006.
[19] Q.K. Song, Z.D. Wang, Dynamical behaviors of fuzzy reaction-diffusion periodic cellular neural networks with variable coefficients and delays, Appl. Math. Modelling, 33:3533-3545, 2009, https://doi.org/10.1016/j.apm.2008.11.017. · Zbl 1185.35129 · doi:10.1016/j.apm.2008.11.017
[20] X.N. Song, J.T. Man, S. Song, C.K. Ahn, Finite/fixed-time anti-synchronization of inconsistent Markovian quaternion-valued memristive neural networks with reaction-diffusion terms, IEEE Trans. Circuits Syst., I, Regul. Pap., 68:363-375, 2020, https://doi.org/10.1109/ TCSI.2020.3025681. · doi:10.1109/TCSI.2020.3025681
[21] X.N. Song, X.L. Sun, J.T. Man, S. Song, Q.T. Wu, Synchronization of fractional-order spatiotemporal complex-valued neural networks in finite-time interval and its application, J. Franklin Inst., 358:8207-8225, 2021, https://doi.org/10.1016/j.jfranklin. 2021.08.016. · Zbl 1472.93165 · doi:10.1016/j.jfranklin.2021.08.016
[22] I. Stamova, G. Stamov, Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction diffusion terms using impulsive and linear controllers, Neural Netw., 96:22-32, 2017, https://doi.org/10.1016/j.neunet.2017.08.009. · Zbl 1441.93106 · doi:10.1016/j.neunet.2017.08.009
[23] W.J. Sun, G.J. Ren, Y.G. Yu, , X.D. Hai, Global synchronization of reaction-diffusion fractional-order memristive neural networks with time delay and unknown parameters, Complexity, 2020:4145826, 2020, https://doi.org/10.1155/2020/4145826. · Zbl 1441.34067 · doi:10.1155/2020/4145826
[24] H.Z. Wei, R.X. Li, B.W. Wu, Dynamic analysis of fractional-order quaternion-valued fuzzy memristive neural networks: Vector ordering approach, Fuzzy Sets Syst., 411:1-24, 2021, https://doi.org/10.1016/j.fss.2020.02.013. · Zbl 1467.93020 · doi:10.1016/j.fss.2020.02.013
[25] X. Wu, S.T. Liu, Y. Wang, Stability analysis of riemann-liouville fractional-order neural networks with reaction-diffusion terms and mixed time-varying delays, Neurocomputing, 431: 169-178, 2021, https://doi.org/10.1016/j.neucom.2020.12.053. · doi:10.1016/j.neucom.2020.12.053
[26] S. Yang, C. Hu, J. Yu, H.J. Jiang, Finite-time cluster synchronization in complex-variable networks with fractional-order and nonlinear coupling, Neural Netw., 135:212-224, 2021, https://doi.org/10.1016/j.neunet.2020.12.015. · Zbl 1525.93401 · doi:10.1016/j.neunet.2020.12.015
[27] S. Yang, C. Hu, J. Yu, H.J. Jiang, Projective synchronization in finite-time for fully quaternion-valued memristive networks with fractional-order, Chaos Solitons Fractals, 147:110911, 2021, https://doi.org/10.1016/j.chaos.2021.110911. · Zbl 1486.93019 · doi:10.1016/j.chaos.2021.110911
[28] S. Yang, H.J. Jiang, C. Hu, J. Yu, Synchronization for fractional-order reaction-diffusion competitive neural networks with leakage and discrete delays, Neurocomputing, 436:47-57, 2021, https://doi.org/10.1016/j.neucom.2021.01.009. · doi:10.1016/j.neucom.2021.01.009
[29] X.S. Yang, Q. Song, J.D. Cao, J.Q. Lu, Synchronization of coupled Markovian reaction-diffusion neural networks with proportional delays via quantized control, IEEE Trans. Neural Netw. Learn. Syst., 30:951-958, 2019, https://doi.org/10.1109/TNNLS.2018. 2853650. · doi:10.1109/TNNLS.2018.2853650
[30] Z.Y. Yang, B. Luo, D.R. Liu, Y.H. Li, Adaptive synchronization of delayed memristive neural networks with unknown parameters, IEEE Trans. Syst. Man Cybern., 50:539-549, 2020, https://doi.org/10.1109/TSMC.2017.2778092. · doi:10.1109/TSMC.2017.2778092
[31] G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371:461-580, 2002, https://doi.org/10.1016/S0370-1573(02)00331-9. · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
[32] R.M. Zhang, H.X. Wang, J.H. Park, H.K. Lam, P.S. He, Quasi-synchronization of reaction-diffusion neural networks under deception attacks, IEEE Trans. Syst. Man Cybern., 52:7833-7844, 2022, https://doi.org/10.1109/TSMC.2022.3166554. · Zbl 1484.35172 · doi:10.1109/TSMC.2022.3166554
[33] W.W. Zhang, H.Y. Zhao, C.L. Sha, Y. Wang, Finite time synchronization of delayed quaternion valued neural networks with fractional order, Neural Process. Lett., 53:3607-3618, 2021, https://doi.org/10.1007/s11063-021-10551-5. · doi:10.1007/s11063-021-10551-5
[34] C. Zou, L. Zhang, X. Hu, Z. Wang, T. Wik, M. Pecht, A review of fractional-order techniques applied to lithiumion batteries, lead-acid batteries, and supercapacitors, J. Power Sources, 390: 286-296, 2018, https://doi.org/10.1016/j.jpowsour.2018.04.033. · doi:10.1016/j.jpowsour.2018.04.033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.