×

Global gradient estimates for shear thinning-type Stokes system on non-smooth domains. (English) Zbl 07906590

Summary: This article presents global \(L^q\) estimates for the weak solution of the steady \(p\)-Stokes equations, which describe the motion of shear-thinning flow under the nonslip boundary condition. We focus on non-smooth domains whose boundaries extend beyond the Lipschitz category, with coefficients belonging to the BMO (Bounded Mean Oscillation) space having a sufficiently small BMO semi-norm.

MSC:

35Q35 PDEs in connection with fluid mechanics
35J25 Boundary value problems for second-order elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
Full Text: DOI

References:

[1] Aikawa, H.; Potential-theoretic characterizations of nonsmooth domains. Bull. Lond. Math. Soc., 36 (2004), 469-482. · Zbl 1058.31002
[2] Beirao Da Veiga, H.; Navier-Stokes equations with shear-thickening viscosity. Regularity up to the boundary. J. Math. Fluid Mech., 11 (2009), 233-257. · Zbl 1213.76047
[3] Beirao Da Veiga, H.; Navier-Stokes equations with shear thinning viscosity. Regularity up to the boundary. J. Math. Fluid Mech., 11 (2009), 258-273. · Zbl 1190.35174
[4] Beirao Da Veiga, H.; Kaplicky, P.; Ružicka, M; Boundary regularity of shear thickening flows. J. Math. Fluid Mech. 13 (2011), 387-404. · Zbl 1270.35360
[5] Berselli, L. C.; On the W 2,q -regularity of incompressible fluids with shear-dependent viscosi-ties: the shear-thinning case. J. Math. Fluid Mech., 11 (2009), 171-185. · Zbl 1193.76019
[6] Berselli, L. C.; Ruzicka, M.; Global regularity properties of steady shear thinning flows. J. Math. Fluid Mech., 450 (2017), 839-871. · Zbl 1378.35236
[7] Byun, S. S.; Ok, J.; Ryu, S.; Global gradient estimates for general nonlinear parabolic equa-tions in nonsmooth domains. J. Differ. Equ. 254 (2013), 4290-4326. · Zbl 1284.35092
[8] Byun, S. S.; So, H.; Weighted estimates for generalized steady Stokes systems in nonsmooth domains. J. Math. Phys., 58 (2017), 023101. · Zbl 1365.35103
[9] Byun, S. S.; Wang, L.; Elliptic equations with BMO coefficients in Reifenberg domains. Comm. Pure Appl. Math., 57 (2004), 1283-1310. · Zbl 1112.35053
[10] Byun, S. S.; Wang, L.; Elliptic equations with measurable coefficients in Reifenberg domains. Adv. Math., 225 (2010), 2648-2673. · Zbl 1198.35068
[11] Caffarelli, L.; Peral, I.; On W 1,p estimates for elliptic equations in divergence form. Comm. Pure Appl. Math., 51 (1998), 1-21. · Zbl 0906.35030
[12] Cho, N; Global Regularity of Shear Thickening Stokes System with Dirichlet Boundary Con-dition on Non-smooth Domains. J. Math. Fluid Mech., 24 (2022), 1-29. · Zbl 1490.35305
[13] Cho, Y.; Global gradient estimates for divergence-type elliptic problems involving general nonlinear operators. J. Differ. Equ., 264 (2018), 6152-6190. · Zbl 1386.35085
[14] Diening, L.; Ettwein, F.; Fractional estimates for non-differentiable elliptic systems with general growth., Forum Math., 20 (2008), 523-556. · Zbl 1188.35069
[15] Diening, L.; Ruzicka, M.; Schumacher, K.; A decomposition technique for John domains. Ann. Acad. Sci. Fenn. Math 35 (2010), 87-114. · Zbl 1194.26022
[16] Diening, L.; Ruzicka, M.; Schumacher, K.; On the finite element approximation of p-Stokes systems. SIAM J. Numer. Anal. 50 (2012), 373-397. · Zbl 1426.76221
[17] Diening, L; Ruzicka, M.; Wolf, J.; Existence of weak solutions for unsteady motions of gen-eralized Newtonian fluids. Ann. Sc. Norm. Super. Pisa Cl. Sci., 9 (2010), 1-46. · Zbl 1253.76017
[18] Dong, H.; Kim, D.; Weighted L q -estimates for stationary Stokes system with partially BMO coefficients. J. Differ. Equ. 264 (2018), 4603-4649. · Zbl 1479.35159
[19] Evans, L. C.; Partial Differential Equations, Grad. Stud. Math., 19, American Mathematical Society, Providence, RI, 1998. · Zbl 0902.35002
[20] Galdi, G. P.; An introduction to the mathematical theory of the Navier-Stokes equations. Vol. · Zbl 0949.35004
[21] Linearized steady problems. Springer tracts in natural philosophy, 38, Springer Verlag, Berlin, Heidelberg, New York, 1994. · Zbl 0949.35004
[22] Giaquinta, M.; Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Sys-tems. 105. Princeton University Press, 2016.
[23] Giannetti, F.; di Napoli, A. P.; Regularity results for a new class of functionals with non-standard growth conditions. J. Differ. Equ. 254 (2013), 1280-1305. · Zbl 1255.49064
[24] Hamburger, C.; Regularity of differential forms minimizing degenerate elliptic functionals. J. Reine Angew. Math. (Crelles J.) 431 (1982), 7-64. · Zbl 0776.35006
[25] Kenig, C. E.; Toro, T.; Harmonic measure on locally flat domains. Duke Math. J. 87 (1997), 509-551. · Zbl 0878.31002
[26] Ladyzhenskaya, O. A.; New equations for the description of the motions of viscous in-compressible fluids, and global solvability for their boundary value problems. Tr. Mat. Inst. Steklova 102 (1967), 85-104. · Zbl 0202.37802
[27] Ladyzenskaja, O. A.; Modifications of the Navier-Stokes equations for large gradients of the velocities. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 126-154. · Zbl 0195.10602
[28] Malek, J.; Rajagopal, K. R.; Ruzicka, M.; Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models Methods Appl. Sci., 5 (1995), 789-812. · Zbl 0838.76005
[29] Ruzicka, M.; Diening, L.; Non-Newtonian Fluids and Function Spaces. In: Proceedings of NAFSA 2006, Prague, 8 (2007), 95-144. · Zbl 1289.35104
[30] Showalter, R. E.; Monotone operators in Banach space and nonlinear partial differential equations. American Mathematical Soc. 49, Providence, RI, 2013.
[31] Troisi, Mario.; Teoremi di inclusione per spazi di Sobolev non isotropi. Ric. Mat. 18, 24, 1969. · Zbl 0182.16802
[32] Wolf, J.; Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity. J. Math. Fluid Mech., 9 (2007), 104-138. Namkyeong Cho Center for Mathematical Machine Learning and its Applications (CM2LA), Dept. of Mathematics, POSTECH, South Korea Email address: namkyeong.cho@gmail.com · Zbl 1151.76426
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.