×

Solving nonlinear wave equations based on barycentric Lagrange interpolation. (English) Zbl 07906465

Summary: In this paper, we deeply study the high-precision barycentric Lagrange interpolation collocation method to solve nonlinear wave equations. Firstly, we introduce the barycentric Lagrange interpolation and provide the differential matrix. Secondly, we construct a direct linearization iteration scheme to solve nonlinear wave equations. Once again, we use the barycentric Lagrange interpolation to approximate the \((2+1)\) dimensional nonlinear wave equations and \((3+1)\) dimensional nonlinear wave equations, and describe the matrix format for direct linearization iteration of the nonlinear wave equations. Finally, the comparative experiments show that the barycentric Lagrange interpolation collocation method for solving nonlinear wave equations have higher calculation accuracy and convergence rate.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35L05 Wave equation

References:

[1] Rincon, MA; Quintino, N., Numerical analysis and simulation for a nonlinear wave equation, J. Comput. Appl. Math., 296, 247-264, 2016 · Zbl 1331.65142 · doi:10.1016/j.cam.2015.09.024
[2] Liepmann, HW; Laguna, GA, Nonlinear interactions in the fluid mechanics of helium II, Ann. Rev. Fluid Mech., 16, 1, 139-177, 1984 · doi:10.1146/annurev.fl.16.010184.001035
[3] Quan, B.; Liang, X.; Ji, G.; Cheng, Y.; Liu, W.; Ma, J.; Zhang, Y.; Li, D.; Xu, G., Dielectric polarization in electromagnetic wave absorption: review and perspective, J. Alloys Compd., 728, 1065-1075, 2017 · doi:10.1016/j.jallcom.2017.09.082
[4] Autere, A.; Jussila, H.; Dai, Y.; Wang, Y.; Lipsanen, H.; Sun, Z., Nonlinear optics with 2D layered materials, Adv. Mater., 30, 24, 1705963, 2018 · doi:10.1002/adma.201705963
[5] Ahmad, H.; Seadawy, AR; Khan, TA; Thounthong, P., Analytic approximate solutions for some nonlinear parabolic dynamical wave equations, J. Taibah Univ. Sci., 14, 1, 346-358, 2020 · doi:10.1080/16583655.2020.1741943
[6] Ablowitz, MJ; Kaup, DJ; Newell, AC; Segur, H., Method for solving the Sine-Gordon equation, Phys. Rev. Lett., 30, 25, 1262, 1973 · doi:10.1103/PhysRevLett.30.1262
[7] Bratsos, AG, The solution of the two dimensional Sine-Gordon equation using the method of lines, J. Comput. Appl. Math., 206, 1, 251-277, 2007 · Zbl 1117.65126 · doi:10.1016/j.cam.2006.07.002
[8] Kolpak, EP; Ivanov, SE, On the three dimensional Klein-Gordon equation with a cubic nonlinearity, Int. J. Math. Anal., 10, 13, 611-622, 2016 · doi:10.12988/ijma.2016.611
[9] Ibrahim, W.; Tamiru, M., Solutions of three dimensional nonlinear Klein-Gordon equations by using quadruple laplace transform, Int. J. Differ. Equ., 2022, 1, 2544576, 2022 · Zbl 1519.35274
[10] Liao, S., A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int. J. Heat Mass Transf., 48, 12, 2529-2539, 2005 · Zbl 1189.76142 · doi:10.1016/j.ijheatmasstransfer.2005.01.005
[11] Liao, S., A new branch of solutions of boundary layer flows over a permeable stretching plate, Int. J. Nonlinear Mech., 42, 6, 819-830, 2007 · Zbl 1200.76046 · doi:10.1016/j.ijnonlinmec.2007.03.007
[12] Ullah, H.; Islam, S.; Dennis, LCC; Abdelhameed, TN; Khan, I.; Fiza, M., Approximate solution of two-dimensional nonlinear wave equation by optimal homotopy asymptotic method, Math. Probl. Eng., 2015, 1, 380104, 2015 · Zbl 1394.65125
[13] Vong, S.; Wang, Z., A compact difference scheme for a two dimensional fractional Klein-Gordon equation with neumann boundary conditions, J. Comput. Phys., 274, 268-282, 2014 · Zbl 1352.65273 · doi:10.1016/j.jcp.2014.06.022
[14] Han, H.; Zhang, Z., Split local artificial boundary conditions for the two dimensional Sine-Gordon equation on \(R^2\), Commun. Comput. Phys., 10, 5, 1161-1183, 2011 · Zbl 1388.65055 · doi:10.4208/cicp.050610.021210a
[15] Huang, R.; Pan, W.; Lu, C.; Zhang, Y.; Chen, S., An improved three-point method based on a difference algorithm, Precis. Eng., 63, 68-82, 2020 · doi:10.1016/j.precisioneng.2020.01.008
[16] Darani, MA, Direct meshless local Petrov-Galerkin method for the two dimensional Klein-Gordon equation, Eng. Anal. Bound. Elem., 74, 1-13, 2017 · Zbl 1403.65066 · doi:10.1016/j.enganabound.2016.10.002
[17] Shivanian, E., Meshless local Petrov-Galerkin (MLPG) method for three dimensional nonlinear wave equations via moving least squares approximation, Eng. Anal. Bound. Elem., 50, 249-257, 2015 · Zbl 1403.65076 · doi:10.1016/j.enganabound.2014.08.014
[18] Khan, K.; Akbar, MA, Exact solutions of the (2+1) dimensional cubic Klein-Gordon equation and the (3+1) dimensional Zakharov-Kuznetsov equation using the modified simple equation method, J. Assoc. Arab Univ. Basic Appl. Sci., 15, 74-81, 2014
[19] Yin, F.; Tian, T.; Song, J.; Zhu, M., Spectral methods using legendre wavelets for nonlinear Klein/Sine-Gordon equations, J. Comput. Appl. Math., 275, 321-334, 2015 · Zbl 1334.65175 · doi:10.1016/j.cam.2014.07.014
[20] Berrut, JP; Trefethen, LN, Barycentric Lagrange interpolation, SIAM Rev., 46, 3, 501-517, 2004 · Zbl 1061.65006 · doi:10.1137/S0036144502417715
[21] Berrut, J.P., Baltensperger, R., Mittelmann, H.D.: Recent developments in barycentric rational interpolation. In: Trends and Applications in Constructive Approximation, pp. 27-51 (2005) · Zbl 1077.65009
[22] Higham, NJ, The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal., 24, 4, 547-556, 2004 · Zbl 1067.65016 · doi:10.1093/imanum/24.4.547
[23] Lawrence, PW; Corless, RM, Stability of rootfinding for barycentric Lagrange interpolants, Numer. Algorithms, 65, 447-464, 2014 · Zbl 1297.65051 · doi:10.1007/s11075-013-9770-3
[24] Wu, H.; Wang, Y.; Zhang, W.; Wen, T., The barycentric interpolation collocation method for a class of nonlinear vibration systems, J. Low Freq. Noise Vib. Active Control, 38, 3-4, 1495-1504, 2019 · doi:10.1177/1461348418824898
[25] Li, J.; Qu, J., Barycentric Lagrange interpolation collocation method for solving the Sine-Gordon equation, Wave Motion, 120, 2023 · Zbl 1525.65106 · doi:10.1016/j.wavemoti.2023.103159
[26] Deng, Y.; Weng, Z., Operator splitting scheme based on barycentric Lagrange interpolation collocation method for the Allen-Cahn equation, J. Appl. Math. Comput., 68, 5, 3347-3365, 2022 · Zbl 1496.65176 · doi:10.1007/s12190-021-01666-y
[27] Li, J.; Su, X.; Qu, J., Linear barycentric rational collocation method for solving telegraph equation, Math. Methods Appl. Sci., 44, 14, 11720-11737, 2021 · Zbl 1512.65021 · doi:10.1002/mma.7548
[28] Li, J., Linear barycentric rational collocation method for solving nonlinear partial differential equations, Int. J. Appl. Comput. Math., 8, 5, 236, 2022 · Zbl 1497.65190 · doi:10.1007/s40819-022-01453-8
[29] Li, J.; Sang, Y., Linear barycentric rational collocation method for beam force vibration equation, Shock Vib., 2021, 1-11, 2021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.