×

A two-level iterative method with Newton-type linearization for the stationary micropolar fluid equations. (English) Zbl 07899584

Summary: In this paper, a two-level Newton iterative method is proposed for the stationary micropolar fluid equations. Firstly, the original equations are solved on a coarse grid based on Newton-type linearization. Then, the simplified linearized equations are solved on a fine grid. The stability and error estimates of the method are given in the theoretical part. The results of the theoretical analysis show that when the coarse mesh size \(\boldsymbol{H}\) and fine mesh size \(\boldsymbol{h}\) satisfy the relation \(\boldsymbol{h=O(H^2})\), the two-level Newton iterative method can achieve an optimal convergence rate. Finally, the effectiveness and applicability of the method are verified by some numerical experiments.

MSC:

65-XX Numerical analysis
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics

Software:

FreeFem++
Full Text: DOI

References:

[1] Eringen, A., Simple micro fluids, Int. J. Eng. Sci., 2, 205-217, 1964 · Zbl 0136.45003 · doi:10.1016/0020-7225(64)90005-9
[2] Eringen, A., Theory of Micropolar Fluids, J. Math. Mech., 16, 1-18, 1966
[3] Łukaszewicz, G., Micropolar fluids: theory and applications, 1999, Boston, MA, USA: Birkhäuser, Boston, MA, USA · Zbl 0923.76003 · doi:10.1007/978-1-4612-0641-5
[4] Ariman, T., On the analysis of blood flow, J. Biomech., 4, 185-192, 1971 · doi:10.1016/0021-9290(71)90003-0
[5] Galdi, G.; Rionero, S., A note on the existence and uniqueness of solutions of the micropolar fluid equations, Int. J. Eng. Sci., 2, 105-108, 1977 · Zbl 0351.76006 · doi:10.1016/0020-7225(77)90025-8
[6] Łukaszewicz, G., On non-stationary flows of incompressible asymmetric fluids, Math. Meth. Appl. Sci., 13, 219-232, 1990 · Zbl 0703.76031 · doi:10.1002/mma.1670130304
[7] Dong, B.; Li, J.; Wu, J., Global well-posedness and large-time decay for the 2D micropolar equations, J. Differ. Equ., 262, 3488-3523, 2017 · Zbl 1361.35143 · doi:10.1016/j.jde.2016.11.029
[8] Ortega-Torres, E.; Rojas-Medar, M., Optimal error estimate of the penalty finite element method for the micropolar fluid equations, Numer. Funct. Anal. Optim., 29, 612-637, 2008 · Zbl 1221.65243 · doi:10.1080/01630560802099555
[9] Nochetto, R.; Salgado, A.; Tomas, I., The micropolar Navier-Stokes equations: a priori error analysis, Math. Mod. Meth. Appl. Sci., 24, 1237-1264, 2014 · Zbl 1288.76019 · doi:10.1142/S0218202514500018
[10] Jiang, Y.; Yang, Y., Analysis of some projection methods for the incompressible fluids with microstructure, J. Korean Math. Soc., 55, 471-506, 2018 · Zbl 1395.65129
[11] Maimaiti, H.; Liu, D., Pressure-correction projection methods for the time-dependent micropolar fluids, Int. J. Numer. Meth. Fluids, 94, 377-393, 2021 · doi:10.1002/fld.5058
[12] Ren, Y.; Liu, D., A pressure correction projection finite element method for the 2D/3D time-dependent thermomicropolar fluid problem, Comput. Math. Appl., 136, 136-150, 2023 · Zbl 1538.76055 · doi:10.1016/j.camwa.2023.02.011
[13] Liu, J.; Liu, D., Numerical analysis and comparison of four stabilized finite element methods for the steady micropolar equations, Entropy, 24, 454, 2022 · doi:10.3390/e24040454
[14] He, Y.; Li, J., Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 198, 1351-1359, 2009 · Zbl 1227.76031 · doi:10.1016/j.cma.2008.12.001
[15] Dong, X.; He, Y.; Zhang, Y., Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics, Comput. Methods Appl. Mech. Eng., 276, 287-311, 2014 · Zbl 1423.76226 · doi:10.1016/j.cma.2014.03.022
[16] Xing, X.; Liu, D., Numerical analysis and comparison of three iterative methods based on finite element for the 2D/3D stationary micropolar fluid equations, Entropy, 24, 628, 2022 · doi:10.3390/e24050628
[17] Xu, J., A novel two two-grid method for semilinear elliptic equations, SIAM, J. Sci. Comput., 15, 231-237, 1994 · Zbl 0795.65077
[18] Xu, J., Two-grid discretization techniques for linear and nonlinear PDEs, SIAM. J. Numer. Anal., 33, 1759-1777, 1996 · Zbl 0860.65119 · doi:10.1137/S0036142992232949
[19] Layton, W., A two-level discretization method for the Navier-Stokes equations, Comput. Math. Appl., 26, 33-38, 1993 · Zbl 0773.76042 · doi:10.1016/0898-1221(93)90318-P
[20] Layton, W.; Lenferink, W., Two-level Picard and modified Picard methods for the Navier-Stokes equations, Appl. Math. Comput., 69, 263-274, 1995 · Zbl 0828.76017
[21] Layton, W.; Tobiska, L., A two-level method with backtraking for the Navier-Stokes equations, SIAM. J. Numer. Anal., 35, 2035-2054, 1998 · Zbl 0913.76050 · doi:10.1137/S003614299630230X
[22] Xu, H.; He, Y., Some iterative finite element methods for steady Navier-Stokes equations with different viscosities, J. Comput. Phys., 232, 136-152, 2013 · Zbl 1291.76211 · doi:10.1016/j.jcp.2012.07.020
[23] He, Y.; Zhang, Y.; Shang, Y.; Xu, H., Two-level Newton iterative method for the 2D/3D steady Navier-Stokes equations, Numer. Methods Partial. Differ. Equ., 28, 1620-1642, 2012 · Zbl 1390.65144 · doi:10.1002/num.20695
[24] He, Y.; Li, J.; Yang, X., Two-level penalized finite element methods for the stationary Navier-Stoke equations, Int. J. Syst. Sci., 2, 131-143, 2006 · Zbl 1099.65110
[25] Girault, V.; Lions, J., Two-grid finite element scheme for the transient NavierCStokes problem, Math. Model. Numer. Anal., 35, 945-80, 2001 · Zbl 1032.76032 · doi:10.1051/m2an:2001145
[26] He, Y., Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM. J. Numer. Anal., 41, 1263-1285, 2003 · Zbl 1130.76365 · doi:10.1137/S0036142901385659
[27] Layton, W.; Lenferink, H.; Peterson, J., A two-level Newton finite element algorithm for approximating electrically conducting incompressible fluid flows, Comput. Math. Appl., 28, 21-31, 1994 · Zbl 0807.76037 · doi:10.1016/0898-1221(94)00137-5
[28] Dong, X.; He, Y., Two-level Newton iterative method for the 2D/3D stationary incompressible magneto-hydrodynamics, J. Sci. Comput., 63, 426-451, 2015 · Zbl 06456931 · doi:10.1007/s10915-014-9900-7
[29] Su, H.; Feng, X.; Zhao, J., Two-level penalty Newton iterative method for the 2D/3D stationary incompressible magnetohydrodynamics equations, J. Sci. Comput., 70, 1144-1179, 2017 · Zbl 1397.76078 · doi:10.1007/s10915-016-0276-8
[30] Zhang, G.; Zhang, Y.; He, Y., Two-level coupled and decoupled parallel correction methods for stationary incompressible magnetohydrodynamics, J. Sci. Comput., 65, 920-939, 2015 · Zbl 1328.65250 · doi:10.1007/s10915-015-9994-6
[31] Girault, V.; Raviart, P., Finite element methods for Navier-Stokes equations: Theory and Algorithms, 1986, Berlin: Springer, Berlin · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[32] Prakash, J.; Sinha, P., Lubrication theory for micropolar fluids and its application to a journal bearing, Int. J. Eng. Sci., 13, 217-232, 1975 · Zbl 0294.76001 · doi:10.1016/0020-7225(75)90031-2
[33] Hecht, F., Pironneau, O., Le Hyaric, A., Ohtsuka, K.: Freefem++ Manual. Available online at: https://freefem.org/ (2012). Accessed 1 Oct 2023
[34] Adams, R., Sobolev Space, 1975, New York: Academic Press, New York
[35] Heywood, J.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem. Part I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM. J. Numer. Anal., 19, 275-311, 1982 · Zbl 0487.76035 · doi:10.1137/0719018
[36] Cai, M.; Mu, M.; Xu, J., Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach, SIAM. J. Numer. Anal., 47, 3325-3338, 2009 · Zbl 1213.76131 · doi:10.1137/080721868
[37] Cai, M.; Huang, P.; Mu, M., Some multilevel decoupled algorithms for a mixed Navier-Stokes/Darcy model, Adv. Comput. Math., 44, 115-145, 2018 · Zbl 1404.65254 · doi:10.1007/s10444-017-9537-9
[38] Huang, P.; Cai, M.; Wang, F., A Newton type linearization based two grid method for coupling fluid flow with porous media flow, Appl. Numer. Math., 106, 182-198, 2016 · Zbl 1381.76176 · doi:10.1016/j.apnum.2016.04.003
[39] Eichel, H.; Tobiska, L.; Xie, H., Supercloseness and superconvergence of stabilized low-order finite element discretizations of the Stokes Problem, Math. Comp., 80, 697-722, 2011 · Zbl 1410.76168 · doi:10.1090/S0025-5718-2010-02404-4
[40] John, V.: Finite element methods for incompressible flow problems. Springer International Publishing (2016) · Zbl 1358.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.