×

Approximate non-relativistic s-wave energy spectra with non-polynomial potentials within the framework of the WKB approximation. (English) Zbl 07899167

Summary: The harmonic oscillator and the Coulomb potential energy perturbed by rational functions are studied using the Wentzel-Kramers-Brillouin (WKB) approximation method. Using the proper quantization conditions, the bound state eigenvalue solutions to the Schrödinger equation were obtained in terms of the complete elliptic integrals of the first, second and third kinds. The results obtained numerically, are in excellent agreement compared to the results obtained via the shifted-\(1/N\) expansion and the generalized pseudo-spectral (GPS) methods. Also, the s-wave bound state energy eigenvalue solutions of the harmonic and Coulomb’s potentials are obtained as special cases. For the perturbed harmonic oscillator, we showed that the convergence of the WKB approximation by the asymptotic approximations of the energy-dependent elliptic functions led to improved results for constrained values of potential parameters.

MSC:

81-XX Quantum theory
Full Text: DOI

References:

[1] Davies, PCW; Betts, DS, Quantum Mechanics, 1994, London: Chapman and Hall, London · doi:10.1007/978-1-4899-2999-0
[2] Eckart, C., The Penetration of a Potential Barrier by Electrons, Phys. Rev., 35, 1303-1309, 1930 · JFM 56.0750.03 · doi:10.1103/PhysRev.35.1303
[3] Hulthén, L., Uber die Eigenlösungen der Schrödinger chung des Deutrons, Ark. Mat. Astron. Fys. A., 28, 1-12, 1942 · Zbl 0026.38404
[4] Levine, IN, Accurate potential energy function for diatomic molecules, J. Chem. Phys., 45, 827-828, 1966 · doi:10.1063/1.1727689
[5] Manning, MF; Rosen, N., Minutes of the Middletown meeting, October 14, 1933, Phys. Rev., 44, 951-954, 1933
[6] Morse, PM, Diatomic molecules according to the wave mechanics. 2. Vibrational levels, Phys. Rev., 34, 57-64, 1929 · JFM 55.0539.02 · doi:10.1103/PhysRev.34.57
[7] Pöschl, G.; Teller, EZ, Bemerkungen zur Quantenmechanik des anharmonischen Oszillators, Zeitschrift für Physik, 83, 143-151, 1933 · Zbl 0007.13603 · doi:10.1007/BF01331132
[8] Schiöberg, D., The energy eigenvalues of hyperbolical potential functions, Mol. Phys., 59, 1123-1137, 1986 · doi:10.1080/00268978600102631
[9] Varshni, YP; Shukla, RC, On a potential energy function, J. Chem. Phys., 40, 250, 1964 · doi:10.1063/1.1724884
[10] Greene, RL; Aldrich, C., Variational wave functions for a screened Coulomb potential, Phys. Rev. A., 14, 2363-2366, 1976 · doi:10.1103/PhysRevA.14.2363
[11] Lucha, W.; Schöberl, FF, Solving the Schrödinger equation for bound states with Mathematica 3.0, Int. J. Mod. Phys. C., 10, 607-619, 1999 · Zbl 0948.81505 · doi:10.1142/S0129183199000450
[12] Pekeris, CL, The rotation-vibration coupling in diatomic molecules, Phys. Rev., 45, 98-103, 1934 · JFM 60.0780.04 · doi:10.1103/PhysRev.45.98
[13] Bayrak, O.; Boztosun, I., Application of the asymptotic iteration method to the exponential cosine screened Coulomb potential, Int. J. Quantum Chem., 107, 1040-1045, 2007 · doi:10.1002/qua.21240
[14] Fack, V.; Meyer, H.; Berghe, GV, The exponential cosine screened coulomb potential in the framework of algebraic perturbation theory, J. Phys A. Math. Gen., 19, 709-713, 1986 · doi:10.1088/0305-4470/19/12/003
[15] Meyer, H.; Fack, V.; Berghe, GV, Dynamical group approach to the exponential cosine screened Coulomb potential, J. Phys A, 18, L849-L851, 1985 · doi:10.1088/0305-4470/18/14/005
[16] Nasser, I.; Abdelmonem, MS; Abdel-Hady, A., J-Matrix approach for the exponential-cosine-screened Coulomb potential, Phys. Scr., 84, 045001, 2011 · doi:10.1088/0031-8949/84/04/045001
[17] Griffiths, DJ, Introduction to Quantum Mechanics, 1995, Upper Saddle River: Prentice Hall Inc., Upper Saddle River · Zbl 0818.00001
[18] Omugbe, E.; Osafile, OE; Okon, IB; Onyeaju, MC, Energy Spectrum and the properties of the Schiöberg potential using the WKB approximation approach, Mol. Phys., 2020 · doi:10.1080/00268976.2020.1818860
[19] Hruska, M.; Keung, W.; Sukhatme, U., Accuracy of semiclassical methods for shape invariant potentials, Phy. Rev. A., 55, 3345-3350, 1997 · doi:10.1103/PhysRevA.55.3345
[20] Biswas, SN; Datta, K.; Saxena, RP; Srivastava, PK; Varma, VS, Eigenvalues of \(\lambda x^{2m}\) anharmonic oscillators, J. Math. Phys., 14, 1190-1195, 1973 · doi:10.1063/1.1666462
[21] Salam, A.; Strathdee, J., Momentum-space behavior of integrals in nonpolynomial Lagrangian theories, Phys. Rev. D., 1, 3296-3312, 1970 · doi:10.1103/PhysRevD.1.3296
[22] Whitehead, R.R., Watt, A., Flessas, G.P., Nagarajan, M.A.: Exact solutions of the Schrodinger equation \(-d/dx^2 +x^2 +(\lambda *x^2)/(1+gx^2))\Psi (x)=E*\Psi (x)\). J. Phys. A. Math. Gen. 15, 1217-1226 (1982) · Zbl 0492.34019
[23] Znojil, M., Potential \(r^2+\lambda r^2/\left(1+gr^2 \right)\) and the analytic continued fractions, J. Phys. A Math. Gen., 16, 293-301, 1983 · Zbl 0513.35028 · doi:10.1088/0305-4470/16/2/012
[24] Adhikari, R.; Dutt, R.; Varshni, YP, Exact solutions for non-polynomial potentials in N-space dimensions using a factorization method and supersymmetry, J. Math. Phys., 32, 447-456, 1991 · Zbl 0725.47048 · doi:10.1063/1.529432
[25] Galicia, S.; Killingbeck, J., Accurate calculation of perturbed oscillator energies, Phys. Lett., 71A, 17-18, 1979 · doi:10.1016/0375-9601(79)90863-6
[26] Junker, G.; Roy, P.; Varshni, YP, Quasi-classical investigation of non-polynomial central potentials with broken supersymmetry, Can. J. Phys., 75, 695-703, 1997 · doi:10.1139/p97-020
[27] Paolo, A.; Fernández, FM, Eigenvalues from power-series expansions: an alternative approach, J. Phys. A Math. Theo., 42, 075201, 2009 · Zbl 1158.81332 · doi:10.1088/1751-8113/42/7/075201
[28] Panahi, H.; Baradaran, M., Unified treatment of a class of spherically symmetric potentials: quasi-exact solution, Adv. High Energy Phys., Article ID 8710604, 1-12, 2016 · Zbl 1375.81089 · doi:10.1155/2016/8710604
[29] Roy, AK; Jalbout, AF; Proynov, EI, Bound state spectra of the 3D rational potential, Int. J. Quantum Chem., 108, 827-836, 2008 · doi:10.1002/qua.21571
[30] Saad, N.; Hall, RL; Ciftci, H., Study of a class of non-polynomial oscillator potentials, J. Phys. A Math. Gen., 39, 7745-7756, 2006 · Zbl 1096.81007 · doi:10.1088/0305-4470/39/24/011
[31] Varshni, YP, Eigenenergies of the \(r^2+\lambda r^2/\left(1+gr^2 \right)\) potential obtained by the shifted 1/N expansion, Phy. Rev. A. Gen Phys., 36, 3009-3014, 1987 · doi:10.1103/PhysRevA.36.3009
[32] Varshni, YP, Relative convergences of the WKB and SWKB approximations, Phys. A. Math. Gen., 25, 5761-5777, 1992 · Zbl 0774.65064 · doi:10.1088/0305-4470/25/21/029
[33] Roy, P.; Roychoudhury, R.; Varshni, YP, Some solutions of a supersymmetric nonpolynomial oscillator—a comparison between the SWKB and WKB methods, J. Phys. A Math. Gen., 21, 1589-1594, 1988 · Zbl 0695.35194 · doi:10.1088/0305-4470/21/7/022
[34] Omugbe, E., WKB solution of the radial Schrödinger equation with Cornell potential without the centrifugal term, Afr. J. Phys., 13, 43-54, 2020
[35] Friedrich, H.; Trost, J., Nonintegral Maslov indices, Phys. Rev. A., 54, 1136-1144, 1996 · doi:10.1103/PhysRevA.54.1136
[36] Omugbe, E.; Osafile, OE; Okon, IB, WKB energy expression for the radial Schrödinger equation with a generalized pseudoharmonic potential, Asian J. Phys. Chem. Sci., 8, 13-20, 2020
[37] Sergeenko, MN, Quasi-classical analysis of three dimensional Schrödinger’s equation and its solution, Mod. Phys. Lett. A., 15, 83-100, 2000 · doi:10.1142/S0217732300000104
[38] Omugbe, E.; Osafile, OE; Onyeaju, MC, Mass spectrum of mesons via the WKB approximation method, Adv. High Energy Phys., Article ID 5901464, 1-8, 2020 · Zbl 1440.81042 · doi:10.1155/2020/5901464
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.