×

What condensed matter physics and statistical physics teach us about the limits of unitary time evolution. (English) Zbl 07899120

Summary: The Schrödinger equation for a macroscopic number of particles is linear in the wave function, deterministic, and invariant under time reversal. In contrast, the concepts used and calculations done in statistical physics and condensed matter physics involve stochasticity, nonlinearities, irreversibility, top-down effects, and elements from classical physics. This paper analyzes several methods used in condensed matter physics and statistical physics and explains how they are in fundamental ways incompatible with the above properties of the Schrödinger equation. The problems posed by reconciling these approaches to unitary quantum mechanics are of a similar type as the quantum measurement problem. This paper, therefore, argues that rather than aiming at reconciling these contrasts one should use them to identify the limits of quantum mechanics. The thermal wavelength and thermal time indicate where these limits are for (quasi-)particles that constitute the thermal degrees of freedom.

MSC:

81-XX Quantum theory

References:

[1] Adler, SL, Why decoherence has not solved the measurement problem: a response to P.W. Anderson, Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys., 34, 1, 135-142, 2003 · doi:10.1016/S1355-2198(02)00086-2
[2] Ballentine, LE, The statistical interpretation of quantum mechanics, Rev. Mod. Phys., 42, 358-381, 1970 · Zbl 0203.27801 · doi:10.1103/RevModPhys.42.358
[3] Bassi, A.; Lochan, K.; Satin, S.; Singh, TP; Ulbricht, H., Models of wave-function collapse, underlying theories, and experimental tests, Rev. Mod. Phys., 85, 2, 471, 2013 · doi:10.1103/RevModPhys.85.471
[4] Breuer, H-P; Petruccione, F., The Theory of Open Quantum Systems, 2002, Oxford: Oxford University Press on Demand, Oxford · Zbl 1053.81001
[5] Chibbaro, S.; Rondoni, L.; Vulpiani, A., Reductionism, Emergence and Levels of Reality, Ch. 6, 2014, Berlin: Springer, Berlin · doi:10.1007/978-3-319-06361-4
[6] Deutsch, JM, Quantum statistical mechanics in a closed system, Phys. Rev. A, 43, 4, 2046, 1991 · doi:10.1103/PhysRevA.43.2046
[7] Drossel, B., Connecting the quantum and classical worlds, Annalen der Physik, 529, 3, 1600256, 2017 · doi:10.1002/andp.201600256
[8] Drossel, B., Ten reasons why a thermalized system cannot be described by a many-particle wave function, Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys., 58, 12-21, 2017 · Zbl 1364.82021 · doi:10.1016/j.shpsb.2017.04.001
[9] Drossel, B.; Ellis, G., Contextual wavefunction collapse: an integrated theory of quantum measurement, New J. Phys., 20, 11, 113025, 2018 · doi:10.1088/1367-2630/aaecec
[10] Eisert, J.; Friesdorf, M.; Gogolin, C., Quantum many-body systems out of equilibrium, Nat. Phys., 11, 2, 124-130, 2015 · doi:10.1038/nphys3215
[11] Ellis, G., How Can Physics Underlie the Mind? Top-down Causation in the Human Context, 2016, Heidelberg: Springer, Heidelberg
[12] Ellis, GFR, On the limits of quantum theory: contextuality and the quantum-classical cut, Ann. Phys., 327, 7, 1890-1932, 2012 · Zbl 1250.81016 · doi:10.1016/j.aop.2012.05.002
[13] Hugh Everett, III, “Relative state” formulation of quantum mechanics, Rev. Mod. Phys., 29, 3, 454, 1957 · doi:10.1103/RevModPhys.29.454
[14] Fuchs, C.A.: Qbism, the perimeter of quantum Bayesianism. arXiv preprint arXiv:1003.5209 (2010)
[15] Gisin, N.: Collapse. What else? In: Gao, S. (ed.) Collapse of the Wave Function: Models, Ontology, Origin, and Implications, pp. 207-224. Cambridge University Press, Cambridge (2018)
[16] Gisin, N.: Indeterminism in physics, classical Chaos and Bohmian mechanics. Are real numbers really real? arXiv preprint arXiv:1803.06824 (2018)
[17] Gogolin, C.; Eisert, J., Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems, Rep. Prog. Phys., 79, 5, 056001, 2016 · doi:10.1088/0034-4885/79/5/056001
[18] Grabowski, Paul E., A Review of Wave Packet Molecular Dynamics, Lecture Notes in Computational Science and Engineering, 265-282, 2014, Cham: Springer International Publishing, Cham
[19] Grangier, P.; Auffèves, A., What is quantum in quantum randomness?, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 376, 2123, 20170322, 2018 · Zbl 1404.81032 · doi:10.1098/rsta.2017.0322
[20] Griffiths, RB, Consistent histories and the interpretation of quantum mechanics, J. Stat. Phys., 36, 1-2, 219-272, 1984 · Zbl 0586.60097 · doi:10.1007/BF01015734
[21] Hollowood, TJ, Decoherence, discord, and the quantum master equation for cosmological perturbations, Phys. Rev. D, 95, 10, 103521, 2017 · doi:10.1103/PhysRevD.95.103521
[22] Jaynes, ET, Information theory and statistical mechanics, Phys. Rev., 106, 4, 620, 1957 · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[23] Kittel, C.; Kroemer, H., Thermal Physics, 1980, London: Macmillan, London
[24] Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, 4, A1133, 1965 · doi:10.1103/PhysRev.140.A1133
[25] Landau, LD; Lifshitz, EM, Course of Theoretical Physics, 2013, Amsterdam: Elsevier, Amsterdam
[26] Laughlin, R. B.; Pines, D., The Theory of Everything, Proceedings of the National Academy of Sciences, 97, 1, 28-31, 2000 · doi:10.1073/pnas.97.1.28
[27] Leggett, AJ, On the nature of research in condensed-state physics, Found. Phys., 22, 2, 221-233, 1992 · doi:10.1007/BF01893613
[28] Marx, D.; Hutter, J., Ab initio molecular dynamics: theory and implementation, Mod. Methods Algorithms Quantum Chem., 1, 301-449, 2000
[29] Matyus, E.: Pre-born-oppenheimer molecular structure theory. arXiv preprint arXiv:1801.05885 (2018)
[30] Popescu, S.; Short, AJ; Winter, A., Entanglement and the foundations of statistical mechanics, Nat. Phys., 2, 11, 754-758, 2006 · doi:10.1038/nphys444
[31] Primas, H., Chemistry, Quantum Mechanics and Reductionism: Perspectives in Theoretical Chemistry, 2013, Heidelberg: Springer, Heidelberg
[32] Reimann, P.; Evstigneev, M., Quantum versus classical foundation of statistical mechanics under experimentally realistic conditions, Phys. Rev. E, 88, 5, 052114, 2013 · doi:10.1103/PhysRevE.88.052114
[33] Rovelli, C., Relational quantum mechanics, Int. J. Theor. Phys., 35, 8, 1637-1678, 1996 · Zbl 0885.94012 · doi:10.1007/BF02302261
[34] Rovelli, C., Space is blue and birds fly through it, Philos. Trans. R. Soc. A, 376, 2017.0312, 2018 · doi:10.1098/rsta.2017.0312
[35] Schlosshauer, M., Decoherence, the measurement problem, and interpretations of quantum mechanics, Rev. Mod. Phys., 76, 4, 1267, 2005 · doi:10.1103/RevModPhys.76.1267
[36] Schwabl, F.: Advanced quantum mechanics. Springer, Berlin, Heidelberg (2005)
[37] Schwabl, F.; Brewer, WD, Statistical Mechanics. Advanced Texts in Physics, 2006, Berlin: Springer, Berlin
[38] Schwabl, F.: Quantum mechanics. Springer, Berlin, Heidelberg (2007) · Zbl 1166.81002
[39] Srednicki, M., Chaos and quantum thermalization, Phys. Rev. E, 50, 2, 888, 1994 · doi:10.1103/PhysRevE.50.888
[40] Tuckerman, ME; Martyna, GJ, Understanding modern molecular dynamics: techniques and applications, J. Phys. Chem. B, 104, 2, 159-178, 2000 · doi:10.1021/jp992433y
[41] Weiss, U., Quantum Dissipative Systems, 2012, Singapore: World Scientific, Singapore · Zbl 1241.81004 · doi:10.1142/8334
[42] Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys., 75, 3, 715, 2003 · Zbl 1205.81031 · doi:10.1103/RevModPhys.75.715
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.