×

On interpretation of Fourier coefficients of Zagier type lifts. (English) Zbl 07895597

Summary: Jeon, Kang, and Kim defined the Zagier lifts between harmonic weak Maass forms of negative integral weights and half integral weights. These lifts were defined by establishing that traces related to cycle integrals of harmonic weak Maass forms of integral weights appear as Fourier coefficients of harmonic weak Maass forms of half integral weights. For fundamental discriminants \(d\) and \(\delta ,\) they studied \(\delta \)-th Fourier coefficients of the \(d\)-th Zagier lift with respect to the condition that \(d\delta\) is not a perfect square. For \(d\delta\) being a perfect square, the interpretation of coefficients in terms of traces is not possible due to the divergence of cycle integrals. In this paper, we provide an alternate definition of traces called modified trace in the condition that \(d\delta\) is a perfect square and interpret such coefficients in terms of the modified trace.

MSC:

11F12 Automorphic forms, one variable
11F30 Fourier coefficients of automorphic forms
11F37 Forms of half-integer weight; nonholomorphic modular forms

Software:

DLMF
Full Text: DOI

References:

[1] Alfes-Neumann, C.; Schwagenscheidt, M., On a theta lift related to the Shintani lift, Adv. Math., 328, 858-889, 2018 · Zbl 1448.11090 · doi:10.1016/j.aim.2018.02.015
[2] Alfes-Neumann, C.; Schwagenscheidt, M., Shintani theta lifts of harmonic Maass forms, Trans. Amer. Math. Soc., 374, 4, 2297-2339, 2019 · Zbl 1457.11028 · doi:10.1090/tran/8265
[3] Andersen, N., Periods of the \(j\)-function along infinite geodesics and mock modular forms, Bull. Lond. Math. Soc., 47, 3, 407-417, 2015 · Zbl 1376.11028 · doi:10.1112/blms/bdv011
[4] Andersen, N.: The Kohnen Zagier formula for Maass forms for \(\Gamma_0(4)\). arXiv:2203.00704 (2022)
[5] Boisvert, R.F., Clark, C.W., Cohl, H.S., Lozier, D.W., McClain, M.A., Miller, B.R., Olde Daalhuis, A.B., Olver, F.W.J., Saunders, B.V., Schneider, B.I. (eds.): NIST Digital Library of Mathematical Functions. Available at http://dlmf.nist.gov/. Release 1.2.0 of 2024-03-15
[6] Bringmann, K.; Guerzhoy, P.; Kane, B., Shintani lifts and fractional derivatives for harmonic weak Maass forms, Adv. Math., 255, 641-671, 2014 · Zbl 1312.11029 · doi:10.1016/j.aim.2014.01.015
[7] Bringmann, K.; Ono, K., Arithmetic properties of coefficients of half-integral weight Maass-Poincaré series, Math. Ann., 337, 591-612, 2007 · Zbl 1154.11015 · doi:10.1007/s00208-006-0048-0
[8] Bringmann, K.; Ono, K.; Rouse, J., Traces of singular moduli on Hilbert modular surfaces, Int. Math. Res. Not. IMRN, 47, 2891-2912, 2005 · Zbl 1109.11028 · doi:10.1155/IMRN.2005.2891
[9] Bringmann, K.; Folsom, A.; Ono, K.; Rolen, L., Harmonic Maass Forms and Mock Modular Forms: Theory and Applications, 2017, Providence: American Mathematical Society, Providence · Zbl 1459.11118 · doi:10.1090/coll/064
[10] Bruinier, J.; Funke, J., On two geometric theta lifts, Duke Math. J., 125, 1, 45-90, 2004 · Zbl 1088.11030 · doi:10.1215/S0012-7094-04-12513-8
[11] Bruinier, JH; Funke, J., Traces of CM values of modular functions, J. Reine Angew. Math., 594, 1-33, 2006 · Zbl 1104.11021 · doi:10.1515/CRELLE.2006.034
[12] Bruinier, J.H., Funke, J., Imamo \(\bar{{\rm g}}\) lu, Ö.: Regularized theta liftings and periods of modular functions. J. Reine Angew. Math. 703, 43-93 (2015) · Zbl 1396.11073
[13] Choi, D., Jeon, D., Kang, S.-Y., Kim, C.H.: Traces of singular moduli of arbitrary level modular functions. Int. Math. Res. Not. IMRN 2007(22), Art. ID rnm110, 17 pp. (2007) · Zbl 1206.11059
[14] Duke, W., Imamoḡlu, Ö., Tóth, Á.: Cycle integrals of the \(J\)-function and mock modular forms. Ann. of Math. (2) 173(2), 947-981 (2011) · Zbl 1270.11044
[15] Duke, W., Imamoḡlu, Ö., Tóth, Á.: Geometric invariants for real quadratic fields. Ann. of Math. (2) 184(3)(2), 949-990 (2016) · Zbl 1372.11056
[16] Duke, W.; Jenkins, P., Integral traces of singular values of weak Maass forms, Algebra Number Theory, 2, 573-593, 2008 · Zbl 1215.11046 · doi:10.2140/ant.2008.2.573
[17] Gross, B.; Kohnen, W.; Zagier, D., Heegner points and derivatives of \(L\)-series II, Math. Ann., 278, 497-562, 1987 · Zbl 0641.14013 · doi:10.1007/BF01458081
[18] Jeon, D.; Kang, S-Y; Kim, CH, Zagier-lift type arithmetic in harmonic weak Maass forms, J. Number Theory, 169, 227-249, 2016 · Zbl 1409.11035 · doi:10.1016/j.jnt.2016.05.012
[19] Jeon, D.; Kang, S-Y; Kim, CH, Weak Maass-Poincaré series and weight 3/2 mock modular forms, J. Number Theory, 133, 8, 2567-2587, 2013 · Zbl 1287.11052 · doi:10.1016/j.jnt.2013.01.011
[20] Jeon, D.; Kang, S-Y; Kim, CH, Cycle integrals of a sesqui-harmonic Maass form of weight zero, J. Number Theory, 141, 92-108, 2014 · Zbl 1322.11036 · doi:10.1016/j.jnt.2014.01.008
[21] Kalia, V., Kumar, B.: Traces of Poincaré series at square discriminants and Fourier coefficients of Mock modular forms. Accepted for publication in Acta Arith. (2024)
[22] Kalia, V., Kumar, B.: On traces of cycle integral attached to harmonic weak Maass form. Preprint (2023)
[23] Kohnen, W., Fourier coefficients of modular forms of half-integral weight, Math. Ann., 271, 237-268, 1985 · Zbl 0542.10018 · doi:10.1007/BF01455989
[24] Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Third enlarged edition. Grundlehren der Mathematischen Wissenschaften, vol. 52. Springer, New York (1966) · Zbl 0143.08502
[25] Miller, A.; Pixton, A., Arithmetic traces of non-holomorphic modular invariants, Int. J. Number Theory, 6, 1, 69-87, 2010 · Zbl 1245.11061 · doi:10.1142/S1793042110002818
[26] Niebur, D., A class of nonanalytic automorphic functions, Nagoya Math. J., 52, 133-145, 1973 · Zbl 0288.10010 · doi:10.1017/S0027763000015932
[27] Waldspurger, J-L, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl., 60, 375-484, 1981 · Zbl 0431.10015
[28] Zagier, D.: Traces of singular moduli. In: Motives, Polylogarithms and Hodge Theory, Part I (Irvine, CA, 1998), pp. 211-244. Int. Press Lect. Ser., 3, Part I. Int. Press, Somerville, MA (2002) · Zbl 1048.11035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.