×

Mixed virtual element method for integro-differential equations of parabolic type. (English) Zbl 07895356

Summary: This article presents and analyzes a mixed virtual element approach for discretizing parabolic integro-differential equations in a bounded subset of \(\mathbb{R}^2\), in addition to the backward Euler approach for temporal discretization. With the help of the intermediate projection along with Fortin and \(L^2\) projections, we effectively tackle the treatment of integral terms in both the fully discrete and semi-discrete analysis. This inclusion leads to the derivation of optimal a priori error estimates with an order of \(O(h^{k+1})\) for the two unknowns. Furthermore, we present a systematic analysis that outlines the step-by-step process for achieving super convergence of the discrete solution, with an order of \(O(h^{k+2})\). Several computational experiments are discussed to validate the proposed scheme’s computational efficiency and support the theoretical conclusions.

MSC:

65R20 Numerical methods for integral equations
45K05 Integro-partial differential equations
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Radid, A.; Rhofir, K., Partitioning differential transformation for solving integro-differential equations problem and application to electrical circuits, Math. Model. Eng. Probl., 6, 2, 235-240, 2019 · doi:10.18280/mmep.060211
[2] Medlock, J.; Kot, M., Spreading disease: integro-differential equations old and new, Math. Biosci., 184, 2, 201-222, 2003 · Zbl 1036.92030 · doi:10.1016/S0025-5564(03)00041-5
[3] Miller, R., An integrodifferential equation for rigid heat conductors with memory, J. Math. Anal. Appl., 66, 2, 313-332, 1978 · Zbl 0391.45012 · doi:10.1016/0022-247X(78)90234-2
[4] Solhi, E.; Mirzaee, F.; Naserifar, S., Approximate solution of two dimensional linear and nonlinear stochastic Itô-Volterra integral equations via meshless scheme, Math. Comput. Simul., 207, 369-387, 2023 · Zbl 1540.65027 · doi:10.1016/j.matcom.2023.01.009
[5] Mirzaee, F.; Rezaei, S.; Samadyar, N., Numerical solution of two-dimensional stochastic time-fractional Sine-Gordon equation on non-rectangular domains using finite difference and meshfree methods, Eng. Anal. Bound. Elem., 127, 53-63, 2021 · Zbl 1464.65150 · doi:10.1016/j.enganabound.2021.03.009
[6] Mirzaee, F.; Alipour, S., A hybrid approach of nonlinear partial mixed integro-differential equations of fractional order, Iran. J. Sci. Technol. Trans. A Sci., 44, 3, 725-737, 2020 · doi:10.1007/s40995-020-00859-7
[7] Samadyar, N.; Mirzaee, F., Numerical scheme for solving singular fractional partial integro-differential equation via orthonormal Bernoulli polynomials, Int. J. Numer. Model. Electron. Netw. Devices Fields, 32, 6, 2652, 2019 · doi:10.1002/jnm.2652
[8] Mirzaee, F.; Alipour, S., Numerical solution of nonlinear partial quadratic integro-differential equations of fractional order via hybrid of block-pulse and parabolic functions, Numer. Methods Partial Differ. Equ., 35, 3, 1134-1151, 2019 · Zbl 1418.65152 · doi:10.1002/num.22342
[9] Mirzaee, F.; Samadyar, N., Numerical solution based on two-dimensional orthonormal Bernstein polynomials for solving some classes of two-dimensional nonlinear integral equations of fractional order, Appl. Math. Comput., 344, 191-203, 2019 · Zbl 1429.65319 · doi:10.1016/j.amc.2018.10.020
[10] Samadyar, N.; Mirzaee, F., Numerical solution of two-dimensional stochastic Fredholm integral equations on hypercube domains via meshfree approach, J. Comput. Appl. Math., 377, 2020 · Zbl 1503.65022 · doi:10.1016/j.cam.2020.112875
[11] Pani, AK; Sinha, R., Error estimates for semidiscrete Galerkin approximation to a time dependent parabolic integro-differential equation with nonsmooth data, Calcolo, 37, 4, 181-205, 2000 · Zbl 1012.65149 · doi:10.1007/s100920070001
[12] Goswami, D.; Pani, AK; Yadav, S., Optimal error estimates of two mixed finite element methods for parabolic integro-differential equations with nonsmooth initial data, J. Sci. Comput., 56, 1, 131-164, 2013 · Zbl 1275.65093 · doi:10.1007/s10915-012-9666-8
[13] Che, H.; Zhou, Z.; Jiang, Z.; Wang, Y., \({H^1}\)-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integro-differential equations, Numer. Methods Partial Differ. Equ., 29, 3, 799-817, 2013 · Zbl 0941.65143 · doi:10.1051/m2an:1999151
[14] Pani, AK; Fairweather, G., \({H^1}\)-Galerkin mixed finite element methods for parabolic partial integro-differential equations, IMA J. Numer. Anal., 22, 2, 231-252, 2002 · Zbl 1008.65101 · doi:10.1093/imanum/22.2.231
[15] Guo, H.; Rui, H., Least-squares Galerkin procedures for parabolic integro-differential equations, Appl. Math. Comput., 150, 3, 749-762, 2004 · Zbl 1039.65095 · doi:10.1016/S0096-3003(03)00304-7
[16] Pani, AK; Yadav, S., An hp-local discontinuous Galerkin method for parabolic integro-differential equations, J. Sci. Comput., 46, 1, 71-99, 2011 · Zbl 1227.65133 · doi:10.1007/s10915-010-9384-z
[17] Dehghan, M.; Shakeri, F., Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via he’s variational iteration technique, Int. J. Numer. Methods Biomed. Eng., 26, 6, 705-715, 2010 · Zbl 1192.65158 · doi:10.1002/cnm.1166
[18] Jain, R.; Pani, AK; Yadav, S., HDG method for linear parabolic integro-differential equations, Appl. Math. Comput., 450, 2023 · Zbl 07701072 · doi:10.1016/j.amc.2023.127987
[19] Yadav, S.; Suthar, M.; Kumar, S., A conforming virtual element method for parabolic integro-differential equations, Comput. Methods Appl. Math., 2023 · doi:10.1515/cmam-2023-0061
[20] Pani, AK; Peterson, TE, Finite element methods with numerical quadrature for parabolic integrodifferential equations, SIAM J. Numer. Anal., 33, 3, 1084-1105, 1996 · Zbl 0858.65141 · doi:10.1137/0733053
[21] Cannon, J.; Lin, Y., A priori \({L}^2\)-error estimates for finite-element methods for nonlinear diffusion equations with memory, SIAM J. Numer. Anal., 27, 3, 595-607, 1990 · Zbl 0709.65122 · doi:10.1137/0727036
[22] Sloan, I.; Thomée, V., Time discretization of an integro-differential equation of parabolic type, SIAM J. Numer. Anal., 23, 5, 1052-1061, 1986 · Zbl 0608.65096 · doi:10.1137/0723073
[23] Fakhar-Izadi, F.; Dehghan, M., Fully spectral collocation method for nonlinear parabolic partial integro-differential equations, Appl. Numer. Math., 123, 99-120, 2018 · Zbl 1377.65169 · doi:10.1016/j.apnum.2017.08.007
[24] Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, LD; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 1, 199-214, 2013 · Zbl 1416.65433 · doi:10.1142/S0218202512500492
[25] Veiga, L.; Brezzi, F.; Marini, LD; Russo, A., Virtual element method for general second-order elliptic problems on polygonal meshes, Math. Models Methods Appl. Sci., 26, 4, 729-750, 2016 · Zbl 1332.65162 · doi:10.48550/arXiv.1412.2646
[26] Tushar, J.; Kumar, A.; Kumar, S., Virtual element methods for general linear elliptic interface problems on polygonal meshes with small edges, Comput. Math. Appl., 122, 61-75, 2022 · Zbl 1524.65862 · doi:10.1016/j.camwa.2022.07.016
[27] Vacca, G.; Veiga, L., Virtual element methods for parabolic problems on polygonal meshes, Numer. Methods Partial Differ. Equ., 31, 6, 2110-2134, 2015 · Zbl 1336.65171 · doi:10.1002/num.21982
[28] Brezzi, F.; Falk, RS; Marini, LD, Basic principles of mixed virtual element methods, ESAIM Math. Model. Numer. Anal., 48, 4, 1227-1240, 2014 · Zbl 1299.76130 · doi:10.1051/m2an/2013138
[29] Cáceres, E.; Gatica, GN; Sequeira, FA, A mixed virtual element method for the Brinkman problem, Math. Models Methods Appl. Sci., 27, 4, 707-743, 2017 · Zbl 1432.65167 · doi:10.1142/S0218202517500142
[30] Gatica, GN; Munar, M.; Sequeira, FA, A mixed virtual element method for the Navier-Stokes equations, Math. Models Methods Appl. Sci., 28, 14, 2719-2762, 2018 · Zbl 1411.76062 · doi:10.1142/S0218202518500598
[31] Cáceres, E.; Gatica, GN; Sequeira, FA, A mixed virtual element method for Quasi-Newtonian stokes flows, SIAM J. Numer. Anal., 56, 1, 317-343, 2018 · Zbl 1380.76033 · doi:10.1137/17M1121160
[32] Gatica, GN; Munar, M.; Sequeira, FA, A mixed virtual element method for a nonlinear brinkman model of porous media flow, Calcolo, 55, 1-36, 2018 · Zbl 1391.76330 · doi:10.1007/s10092-018-0262-7
[33] Sinha, RK; Ewing, RE; Lazarov, RD, Mixed finite element approximations of parabolic integro-differential equations with nonsmooth initial data, SIAM J. Numer. Anal., 47, 5, 3269-3292, 2009 · Zbl 1205.65341 · doi:10.1137/080740490
[34] Jiang, Z., \({L}^\infty ({L}^2)\) and \({L}^\infty ({L}^\infty )\) error estimates for mixed methods for integro-differential equations of parabolic type, ESAIM Math. Model. Numer. Anal., 33, 3, 531-546, 1999 · Zbl 0941.65143 · doi:10.1051/m2an:1999151
[35] Da Veiga, LB; Brezzi, F.; Marini, LD; Russo, A., H (div) and h (curl)-conforming virtual element methods, Numerische Mathematik, 133, 303-332, 2016 · Zbl 1343.65133 · doi:10.1007/s00211-015-0746-1
[36] Veiga, L.; Brezzi, F.; Marini, LD; Russo, A., Mixed virtual element methods for general second order elliptic problems on polygonal meshes, ESAIM Math. Model. Numer. Anal.-Modélisation Mathématique et Analyse Numérique, 50, 3, 727-747, 2016 · Zbl 1343.65134 · doi:10.1051/m2an/2015067
[37] Tang, X.; Liu, Z.; Zhang, B.; Feng, M., On the locking-free three-field virtual element methods for Biot’s consolidation model in poroelasticity, ESAIM Math. Model. Numer. Anal., 55, 909-939, 2021 · Zbl 1481.65191 · doi:10.1051/m2an/2020064
[38] Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A.: Virtual element implementation for general elliptic equations. Building bridges: connections and challenges in modern approaches to numerical partial differential equations, pp. 39-71 (2016) doi:10.1007/978-3-319-41640-3_2 · Zbl 1361.65002
[39] Park, E-J, Mixed finite element methods for nonlinear second-order elliptic problems, SIAM J. Numer. Anal., 32, 3, 865-885, 1995 · Zbl 0834.65108 · doi:10.1137/0732040
[40] Gao, J.; Zhao, M.; Du, N.; Guo, X.; Wang, H.; Zhang, J., A finite element method for space-time directional fractional diffusion partial differential equations in the plane and its error analysis, J. Comput Appl. Math., 362, 354-365, 2019 · Zbl 1422.65254 · doi:10.1016/j.cam.2018.11.036
[41] Calo, VM; Collier, N.; Pardo, D.; Paszyński, MR, Computational complexity and memory usage for multi-frontal direct solvers used in p finite element analysis, Procedia Comput. Sci., 4, 1854-1861, 2011 · doi:10.1016/j.procs.2011.04.201
[42] Farmaga, I., Shmigelskyi, P., Spiewak, P., Ciupinski, L.: Evaluation of computational complexity of finite element analysis. In: 2011 11th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), pp. 213-214 (2011). IEEE
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.