×

On the least almost-prime in arithmetic progressions. (English) Zbl 07893397

Summary: Let \(\mathcal{P}_{2}\) denote a positive integer with at most \(2\) prime factors, counted according to multiplicity. For integers \(a\), \(q\) such that \((a,q)=1\), let \(\mathcal{P}_{2}(q,a)\) denote the least \(\mathcal{P}_{2}\) in the arithmetic progression \(\{nq+a\}_{n=1}^{\infty}\). It is proved that for sufficiently large \(q\), we have \[\mathcal{P}_{2}(q,a)\ll q^{1.825}.\] This result constitutes an improvement upon that of J. Li et al. [Czech. Math. J. 73, No. 1, 177–188 (2023; Zbl 07655761)], who obtained \(\mathcal P_{2}(q,a)\ll q^{1.8345}\).

MSC:

11N13 Primes in congruence classes
11N35 Sieves
11N36 Applications of sieve methods

Citations:

Zbl 07655761
Full Text: DOI

References:

[1] Halberstam, H.; Richert, H.-E., Sieve Methods, London Mathematical Society Monographs 4. Academic Press, London (1974) · Zbl 0298.10026
[2] Heath-Brown, D. R., Almost-primes in arithmetic progressions and short intervals, Math. Proc. Camb. Philos. Soc. 83 (1978), 357-375 · Zbl 0375.10027 · doi:10.1017/S0305004100054657
[3] Heath-Brown, D. R., Zero-free regions for Dirichlet \(L\)-functions and the least prime in an arithmetic progression, Proc. Lond. Math. Soc., III. Ser. 64 (1992), 265-338 · Zbl 0739.11033 · doi:10.1112/plms/s3-64.2.265
[4] Hooley, C., On the Brun-Titchmarsh theorem, J. Reine Angew. Math. 255 (1972), 60-79 · Zbl 0252.10045 · doi:10.1515/crll.1972.255.60
[5] Iwaniec, H., A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320 · Zbl 0444.10038 · doi:10.4064/aa-37-1-307-320
[6] Iwaniec, H., On the Brun-Titchmarsh theorem, J. Math. Soc. Japan 34 (1982), 95-123 · Zbl 0486.10033 · doi:10.2969/jmsj/03410095
[7] Iwaniec, H.; Laborde, M., \(P_2\) in short intervals, Ann. Inst. Fourier 31 (1981), 37-56 · Zbl 0472.10048 · doi:10.5802/aif.848
[8] Jurkat, W. B.; Richert, H.-E., An improvement of Selberg’s sieve method. I, Acta Arith. 11 (1965), 217-240 · Zbl 0128.26902 · doi:10.4064/aa-11-2-217-240
[9] Laborde, M., Buchstab’s sifting weights, Mathematika 26 (1979), 250-257 · Zbl 0429.10028 · doi:10.1112/S0025579300009803
[10] Levin, B. V., On the least almost prime number in an arithmetic progression and the sequence \(k^2x^2+1\), Usp. Mat. Nauk 20 (1965), 158-162 Russian · Zbl 0154.30002
[11] Li, J.; Zhang, M.; Cai, Y., On the least almost-prime in arithmetic progression, Czech. Math. J. 73 (2023), 177-188 · Zbl 07655761 · doi:10.21136/CMJ.2022.0478-21
[12] Linnik, Y. V., On the least prime number in an arithmetic progression. I. The basic theorem, Mat. Sb., Nov. Ser. 15 (1944), 139-178 Russian · Zbl 0063.03584
[13] Linnik, Y. V., On the least prime number in an arithmetic progression. II. The Deuring-Heilbronn phenomenon, Mat. Sb., Nov. Ser. 15 (1944), 347-368 Russian · Zbl 0063.03585
[14] Mertens, F., A contribution to analytic number theory: On the distribution of primes, J. Reine Angew. Math. 78 (1874), 46-62 German \99999JFM99999 06.0116.01 · JFM 06.0116.01 · doi:10.1515/crll.1874.78.46
[15] Motohashi, Y., On almost-primes in arithmetic progressions. III, Proc. Japan Acad. 52 (1976), 116-118 · Zbl 0361.10039 · doi:10.3792/pja/1195518371
[16] Pan, C. D.; Pan, C. B., Goldbach Conjecture, Science Press, Beijing (1992) · Zbl 0849.11080
[17] Xylouris, T., On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet \(L\)-functions, Acta Arith. 150 (2011), 65-91 · Zbl 1248.11067 · doi:10.4064/aa150-1-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.