×

Hierarchical predefined-time bipartite tracking of Euler-Lagrange systems over a signed graph. (English) Zbl 07892558

Summary: This paper addresses the hierarchical predefined-time bipartite tracking problem in networked Euler-Lagrange systems (ELSs) over a signed graph, considering the presence of outer disturbances and dynamic uncertainties. An algorithm about the novel hierarchical predefined-time control (HPTC) is presented here, which aims to guide the states of two opposing subgroups of the ELSs to achieve the leader’s trajectory while the signs are opposite. The algorithm allows for flexibility in setting the desired settling time for the system, the upper bound of which is simple to be predetermined in advance and adjusted like other parameters.Through Lyapunov stability analysis, a sufficient criteria is established for achieving predefined-time bipartite tracking problem. Finally, numerical simulations are conducted to illustrate the effectiveness and performance of the developed methods.
© 2023 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd

MSC:

93-XX Systems theory; control
Full Text: DOI

References:

[1] R.Olfati‐Saber and R. M.Murray, Consensus problems in networks of agents with switching topology and time‐delays, IEEE Trans. Autom. Control48 (2004), no. 9, 1520-1533. · Zbl 1365.93301
[2] M.Zaeri Amirani, N.Bigdeli, and M.Haeri, Distributed fault detection and isolation in time‐varying formation tracking uav multi‐agent systems, Asian J. Control25 (2023), no. 1, 604-622. · Zbl 07889020
[3] E.Zhu, J.Pang, N.Sun, H.Gao, Q.Sun, and Z.Chen, Airship horizontal trajectory tracking control based on active disturbance rejection control (adrc), Nonlinear Dyn.75 (2014), 725-734.
[4] J. M.Brewer and P.Tsiotras, Partial attitude synchronization for networks of underactuated spacecraft, Automatica97 (2018), 27-37. · Zbl 1406.93015
[5] T.Han and W. X.Zheng, Bipartite output consensus for heterogeneous multi‐agent systems via output regulation approach, IEEE Trans. Circuits Syst. II Express Briefs68 (2020), no. 1, 281-285.
[6] Y.Wang, Q.Wu, and Y.Wang, Distributed cooperative control for multiple quadrotor systems via dynamic surface control, Nonlinear Dyn.75 (2014), 513-527. · Zbl 1282.70046
[7] T.Han, Z.‐H.Guan, X.‐S.Zhan, H.Yan, and J.Chen, Observer‐based bipartite consensus of descriptor multi‐agent systems, J. Control Theory Appl.40 (2023), no. 1, 32-38.
[8] X.Wu, Y.Wu, Z.Xu, and Q.Chen, Fixed‐time flocking formation of nonlinear multi‐agent system with uncertain state perturbation, Int. J. Control2022 (2022), 1-11.
[9] B.Wang, J.Wang, B.Zhang, and X.Li, Global cooperative control framework for multiagent systems subject to actuator saturation with industrial applications, IEEE Trans. Syst. Man. Cybern. Syst.47 (2016), no. 7, 1270-1283.
[10] T.Han, Z.‐H.Guan, B.Xiao, and H.Yan, Bipartite average tracking for multi‐agent systems with disturbances: finite‐time and fixed‐time convergence, IEEE Trans. Circuits Syst. I. Regul. Pap.68 (2021), no. 10, 4393-4402.
[11] J.Long, W.Wang, C.Wen, J.Huang, and J.Lv, Output feedback based adaptive consensus tracking for uncertain heterogeneous multi‐agent systems with event‐triggered communication, Automatica136 (2022), 110049. · Zbl 1480.93388
[12] Y.Lu, X.Dong, Q.Li, J.Lv, and Z.Ren, Time‐varying group formation‐tracking control for general linear multi‐agent systems with switching topologies and unknown input, Int. J. Robust Nonlinear Control32 (2022), no. 4, 1925-1940. · Zbl 07769335
[13] C.‐C.Hua, K.Li, and X.‐P.Guan, Semi‐global/global output consensus for nonlinear multiagent systems with time delays, Automatica103 (2019), 480-489. · Zbl 1415.93018
[14] J.Zanganeh, S. K.Hosseini Sani, and N.Pariz, Consensus tracking control for time‐varying delayed linear multi‐agent systems under relative state saturation constraints, Trans. Inst. Meas. Control2023 (2023), 01423312231162970.
[15] V.Falkenhahn, T.Mahl, A.Hildebrandt, R.Neumann, and O.Sawodny, Dynamic modeling of bellows‐actuated continuum robots using the Euler‐Lagrange formalism, IEEE Trans. Rob.31 (2015), no. 6, 1483-1496.
[16] S.Roy, S.Baldi, P.Li, and V. N.Sankaranarayanan, Artificial‐delay adaptive control for underactuated Euler‐Lagrange robotics, IEEE/ASME Trans. Mechatron.26 (2021), no. 6, 3064-3075.
[17] K.Liu and R.Wang, Antisaturation command filtered backstepping control‐based disturbance rejection for a quadarotor uav, IEEE Trans. Circuits Syst. II Express Briefs68 (2021), no. 12, 3577-3581.
[18] G. V.Raffo, M. G.Ortega, and F. R.Rubio, An integral predictive/nonlinear h
[( \infty \]\) control structure for a quadrotor helicopter, Automatica46 (2010), no. 1, 29-39. · Zbl 1214.93042
[19] Y.Guo, B.Huang, S.‐M.Song, A.‐J.Li, and C.‐Q.Wang, Robust saturated finite‐time attitude control for spacecraft using integral sliding mode, J. Guid. Control Dyn.42 (2019), no. 2, 440-446.
[20] Y.Guo, S.‐M.Song, and X.‐H.Li, Finite‐time output feedback attitude coordination control for formation flying spacecraft without unwinding, Acta. Astronaut.122 (2016), 159-174.
[21] S. P.Bhat and D. S.Bernstein, Continuous finite‐time stabilization of the translational and rotational double integrators, IEEE Trans. Autom. Control.43 (1998), no. 5, 678-682. · Zbl 0925.93821
[22] H.Du, G.Wen, G.Chen, J.Cao, and F. E.Alsaadi, A distributed finite‐time consensus algorithm for higher‐order leaderless and leader‐following multiagent systems, IEEE Trans. Syst. Man. Cybern. Syst.47 (2017), no. 7, 1625-1634.
[23] S.Li, H.Du, and X.Lin, Finite‐time consensus algorithm for multi‐agent systems with double‐integrator dynamics, Automatica47 (2011), no. 8, 1706-1712. · Zbl 1226.93014
[24] L.Gu, Z.Zhao, J.Sun, and Z.Wang, Finite‐time leader‐follower consensus control of multiagent systems with mismatched disturbances, Asian J. Control24 (2022), no. 2, 722-731. · Zbl 07887007
[25] M.Ghasemi, S. G.Nersesov, and G.Clayton, Finite‐time tracking using sliding mode control, J. Franklin Inst.351 (2014), no. 5, 2966-2990. · Zbl 1372.93061
[26] J.Lyu, J.Qin, Q.Ma, W. X.Zheng, and Y.Kang, Finite‐time attitude synchronisation for multiple spacecraft, IET Control Theory Appl.10 (2016), no. 10, 1106-1114.
[27] M.Van, S.Sam Ge, and D.Ceglarek, Global finite‐time cooperative control for multiple manipulators using integral sliding mode control, Asian J. Control.24 (2022), no. 6, 2862-2876. · Zbl 07887183
[28] A.Polyakov, Nonlinear feedback design for fixed‐time stabilization of linear control systems, IEEE Trans. Autom. Control.57 (2011), no. 8, 2106-2110. · Zbl 1369.93128
[29] X.‐F.Zhao, T.Han, X.‐S.Zhan, and H.Yan, Distributed estimator‐based fixed‐time bipartite consensus of multiple euler‐lagrange systems over a signed digraph, IEEE Trans. Circuits Syst. II Express Briefs69 (2022), no. 6, 2847-2851.
[30] J.Fu and J.Wang, Fixed‐time coordinated tracking for second‐order multi‐agent systems with bounded input uncertainties, Syst. Control Lett.93 (2016), 1-12. · Zbl 1338.93020
[31] D.Meng and Z.Zuo, Signed‐average consensus for networks of agents: A nonlinear fixed‐time convergence protocol, Nonlinear Dyn.85 (2016), 155-165. · Zbl 1349.94013
[32] B.Ning, Q.‐L.Han, Z.Zuo, J.Jin, and J.Zheng, Collective behaviors of mobile robots beyond the nearest neighbor rules with switching topology, IEEE Trans. Cybern.48 (2017), no. 5, 1577-1590.
[33] B.Ning, Q.‐L.Han, and Z.Zuo, Distributed optimization for multiagent systems: An edge‐based fixed‐time consensus approach, IEEE Trans. Cybern.49 (2017), no. 1, 122-132.
[34] M.Van and D.Ceglarek, Robust fault tolerant control of robot manipulators with global fixed‐time convergence, J. Franklin Inst.358 (2021), no. 1, 699-722. · Zbl 1455.93041
[35] R.Jin, P.Rocco, and Y.Geng, Observer‐based fixed‐time tracking control for space robots in task space, Acta Astronaut.184 (2021), 35-45.
[36] L.Cao, B.Xiao, and M.Golestani, Robust fixed‐time attitude stabilization control of flexible spacecraft with actuator uncertainty, Nonlinear Dyn.100 (2020), 2505-2519. · Zbl 1516.70041
[37] B.Yang, H.Huang, and L.Cao, Centered error entropy‐based sigma‐point kalman filter for spacecraft state estimation with non‐gaussian noise, Space Sci. Technol.2022 (2022), 9854601.
[38] A. J.Muñoz‐Vázquez, J. D.Sánchez‐Torres, E.Jiménez‐Rodríguez, and A. G.Loukianov, Predefined‐time robust stabilization of robotic manipulators, IEEE/ASME Trans. Mechatron.24 (2019), no. 3, 1033-1040.
[39] J.Ni, L.Liu, Y.Tang, and C.Liu, Predefined‐time consensus tracking of second‐order multiagent systems, IEEE Trans. Syst. Man. Cybern. Syst.51 (2019), no. 4, 2550-2560.
[40] C.‐D.Liang, M.‐F.Ge, Z.‐W.Liu, G.Ling, and X.‐W.Zhao, A novel sliding surface design for predefined‐time stabilization of euler‐lagrange systems, Nonlinear Dyn.106 (2021), no. 1, 445-458.
[41] X.‐F.Zhao, T.Han, B.Xiao, H.Yan, M.‐F.Ge, and C.‐D.Liang, Task‐space time‐varying formation tracking for networked heterogeneous euler‐lagrange systems via hierarchical predefined‐time control approach, Nonlinear Dyn.109 (2022), no. 4, 2675-2692.
[42] G.Wen, H.Wang, X.Yu, and W.Yu, Bipartite tracking consensus of linear multi‐agent systems with a dynamic leader, IEEE Trans. Circuits Syst. II Express Briefs65 (2017), no. 9, 1204-1208.
[43] Z.Zuo, Nonsingular fixed‐time consensus tracking for second‐order multi‐agent networks, Automatica54 (2015), 305-309. · Zbl 1318.93010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.