×

On the operator origins of classical and quantum wave functions. (English) Zbl 07886856

Summary: We investigate operator algebraic origins of the classical Koopman-von Neumann wave function \(\psi_{KvN}\) as well as the quantum-mechanical one \(\psi_{QM}\). We introduce a formalism of Operator Mechanics (OM) based on a noncommutative Poisson, symplectic, and noncommutative differential structures. OM serves as a pre-quantum algebra from which algebraic structures relevant to real-world classical and quantum mechanics follow. In particular, \(\psi_{KvN}\) and \(\psi_{QM}\) are both consequences of this pre-quantum formalism. No a priori Hilbert space is needed. OM admits an algebraic notion of operator expectation values without invoking states. A phase space bundle \(\mathcal{E}\) follows from this. \(\psi_{KvN}\) and \(\psi_{QM}\) are shown to be sections in \(\mathcal{E}\). The difference between \(\psi_{KvN}\) and \(\psi_{QM}\) originates from a quantization map interpreted as “twisting” of sections over \(\mathcal{E}\). We also show that the Schrödinger equation is obtained from the Koopman-von Neumann equation. What this suggests is that neither the Schrödinger equation nor the quantum wave function are fundamental structures. Rather, they both originate from a pre-quantum operator algebra. Finally, we comment on how entanglement between these operators suggests emergence of space; and possible extensions of this formalism to field theories.

MSC:

81-XX Quantum theory

References:

[1] Abramsky, S.; Coecke, B., Categorical quantum mechanics, Handbook of Quantum Logic and Quantum Structures, 261-325, 2009, Elsevier · Zbl 1273.81014 · doi:10.1016/B978-0-444-52869-8.50010-4
[2] Adler, SL, Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory, 2004, Cambridge: Cambridge University Press, Cambridge · Zbl 1095.81002 · doi:10.1017/CBO9780511535277
[3] Anninos, D.; Mühlmann, B., Notes on matrix models (matrix musings), J. Stat. Mech. Theory Exp., 2020, 8, 2020 · Zbl 1459.81094 · doi:10.1088/1742-5468/aba499
[4] Arsiwalla, XD, More rings to rule them all: fragmentation, 4D \(\leftrightarrow 5\) D and split-spectral flows, J. High Energy Phys., 2008, 2, 066, 2008 · doi:10.1088/1126-6708/2008/02/066
[5] Arsiwalla, XD, Entropy functions with 5D Chern-Simons terms, J. High Energy Phys., 09, 059, 2009 · doi:10.1088/1126-6708/2009/09/059
[6] Arsiwalla, X. D.: Supersymmetric Black Holes as Probes of Quantum Gravity. PhD Thesis, University of Amsterdam. https://pure.uva.nl/ws/files/871677/75420_thesis.pdf (2010)
[7] Arsiwalla, X.D.: Homotopic Foundations of Wolfram Models. Wolfram Community. https://community.wolfram.com/groups/-/m/t/2032113 (2020)
[8] Arsiwalla, XD; Boels, R.; Marino, M.; Sinkovics, A., Phase transitions in q-deformed 2D Yang-Mills theory and topological strings, Phys. Rev. D, 73, 2, 2006 · doi:10.1103/PhysRevD.73.026005
[9] Arsiwalla, XD; de Boer, J.; Papadodimas, K.; Verlinde, E., Degenerate stars and gravitational collapse in AdS/CFT, J. High Energy Phys., 1, 1-66, 2011 · Zbl 1214.81182
[10] Arsiwalla, X.D., Elshatlawy, H., Rickles, D.: Pregeometry, Formal Language and Constructivist Foundations of Physics. arXiv preprint arXiv:2311.03973 (2023)
[11] Arsiwalla, X.D., Gorard, J.: Pregeometric Spaces from Wolfram Model Rewriting Systems as Homotopy Types. arXiv preprint arXiv:2111.03460 (2021)
[12] Arsiwalla, X.D., Gorard, J., Elshatlawy, H.: Homotopies in Multiway (Non-Deterministic) Rewriting Systems as \(n\)-Fold Categories. arXiv preprint arXiv:2105.10822 (2021)
[13] Ashtekar, A.; Schilling, TA, Geometrical formulation of quantum mechanics, On Einstein‘s Path, 23-65, 1999, Springer · Zbl 0976.53088 · doi:10.1007/978-1-4612-1422-9_3
[14] Van den Bergh, M., Double Poisson Algebras, 5711-5769, 2008, Transactions of the American Mathematical Society · Zbl 1157.53046
[15] Bocklandt, R.; Le Bruyn, L., Necklace Lie algebras and noncommutative symplectic geometry, Math. Z., 240, 1, 141-167, 2002 · Zbl 1113.16019 · doi:10.1007/s002090100366
[16] Bondar, DI; Cabrera, R.; Lompay, RR; Ivanov, MY; Rabitz, HA, Operational dynamic modeling transcending quantum and classical mechanics, Phys. Rev. Lett., 109, 19, 2012 · doi:10.1103/PhysRevLett.109.190403
[17] Brézin, E.; Itzykson, C.; Parisi, G.; Zuber, J-B, Planar diagrams, Commun. Math. Phys., 59, 1, 35-51, 1978 · Zbl 0997.81548 · doi:10.1007/BF01614153
[18] Buliga, M.: Symplectic, Hofer and sub-Riemannian geometry. arXiv preprint arXiv: math/0201107 (2002)
[19] Buliga, M.: Dilatation structures in sub-Riemannian geometry. arXiv preprint arXiv:0708.4298 (2007)
[20] Carroll, SM, Reality as a vector in Hilbert space, Quantum Mechanics and Fundamentality, 211-224, 2022, Springer · doi:10.1007/978-3-030-99642-0_15
[21] Carroll, SM; Singh, A., Mad-dog everettianism: quantum mechanics at its most minimal, What is Fundamental?, 95-104, 2019, NY: Springer, NY · doi:10.1007/978-3-030-11301-8_10
[22] Chester, D., Arsiwalla, X.D., Kauffman, L., Planat, M., Irwin, K.: Quantization of a New Canonical, Covariant, and Symplectic Hamiltonian Density. arXiv preprint arXiv:2305.08864 (2023)
[23] Coecke, B.; Duncan, R., Interacting quantum observables: categorical algebra and diagrammatics, New J. Phys., 13, 2011, 2009 · Zbl 1448.81025 · doi:10.1088/1367-2630/13/4/043016
[24] Coecke, B., Kissinger, A.: Picturing quantum processes. In: International Conference on Theory and Application of Diagrams, Springer, pp. 28-31 (2018)
[25] Connes, A., Non-commutative differential geometry, Publ. Math. l’IHES, 62, 41-144, 1985 · Zbl 0592.46056 · doi:10.1007/BF02698807
[26] Crawley-Boevey, W.; Etingof, P.; Ginzburg, V., Noncommutative geometry and quiver algebras, Adv. Math., 209, 1, 274-336, 2007 · Zbl 1111.53066 · doi:10.1016/j.aim.2006.05.004
[27] Dijkgraaf, R.; Vafa, C., Matrix models, topological strings, and supersymmetric gauge theories, Nucl. Phys. B, 644, 1-2, 3-20, 2002 · Zbl 0999.81068 · doi:10.1016/S0550-3213(02)00766-6
[28] Du Plessis, JF; Arsiwalla, XD, A cosine rule-based discrete sectional curvature for graphs, J. Complex Netw., 11, 4, 022, 2023 · Zbl 07744141
[29] Elshatlawy, H., Rickles, D., Arsiwalla, X.D.: Ruliology: Linking computation, observers and physical law. arXiv preprint arXiv:2308.16068 (2023)
[30] Evenbly, G.; Vidal, G., Tensor network states and geometry, J. Stat. Phys., 145, 4, 891-918, 2011 · Zbl 1231.82021 · doi:10.1007/s10955-011-0237-4
[31] Eynard, B., Kimura, T., Ribault, S.: Random matrices. arXiv preprint arXiv:1510.04430 (2015)
[32] Freidel, L.; Leigh, RG; Minic, D., Metastring theory and modular space-time, J. High Energy Phys., 6, 1-76, 2015 · Zbl 1388.81528
[33] Freidel, L.; Leigh, RG; Minic, D., Quantum spaces are modular, Phys. Rev. D, 94, 10, 2016 · doi:10.1103/PhysRevD.94.104052
[34] Gorard, J., Namuduri, M., Arsiwalla, X.D.: ZX-Calculus and Extended Hypergraph Rewriting Systems I: A Multiway Approach to Categorical Quantum Information Theory. arXiv preprint arXiv:2010.02752 (2020)
[35] Gorard, J., Namuduri, M., Arsiwalla, X.D.: Fast Automated Reasoning over String Diagrams using Multiway Causal Structure. arXiv preprint arXiv:2105.04057 (2021)
[36] Gorard, J., Namuduri, M., Arsiwalla, X.D.: ZX-Calculus and Extended Wolfram Model Systems II: Fast Diagrammatic Reasoning with an Application to Quantum Circuit Simplification. arXiv preprint arXiv:2103.15820 (2021)
[37] Groenewold, HJ, On the Principles of Elementary Quantum Mechanics, 1-56, 1946, Dordrecht: Springer, Dordrecht · doi:10.1007/978-94-017-6065-2
[38] Hawkins, E., Minz, C., Rejzner, K.: Quantization, Dequantization, and Distinguished States. arXiv preprint arXiv:2207.05667 (2022)
[39] Kauffman, LH, Noncommutativity and discrete physics, Phys. D Nonlinear Phenom., 120, 1-2, 125-138, 1998 · Zbl 1040.81529 · doi:10.1016/S0167-2789(98)00049-9
[40] Kauffman, LH, Non-commutative worlds, New J. Phys., 6, 1, 173, 2004 · doi:10.1088/1367-2630/6/1/173
[41] Kauffman, LH, Non-commutative worlds and classical constraints, Entropy, 20, 7, 483, 2018 · doi:10.3390/e20070483
[42] Kauffman, LH, Symmetry, Calculus, gauge theory and noncommutative worlds, 14, 3, 430, 2022
[43] Kauffmans, LH, Knot diagrammatics, Handbook of Knot Theory, 233-318, 2005, Elsevier · Zbl 1098.57005 · doi:10.1016/B978-044451452-3/50007-1
[44] Klein, U., From Koopman-von Neumann theory to quantum theory, Quantum Stud. Math. Found., 5, 2, 219-227, 2018 · Zbl 1400.81095 · doi:10.1007/s40509-017-0113-2
[45] Koopman, BO, Hamiltonian systems and transformation in Hilbert space, Proc. Natl. Acad. Sci., 17, 5, 315-318, 1931 · Zbl 0002.05701 · doi:10.1073/pnas.17.5.315
[46] Meilă, M., Comparing clusterings by the variation of information, Learning Theory and Kernel Machines, 173-187, 2003, NY: Springer, NY · Zbl 1274.68338 · doi:10.1007/978-3-540-45167-9_14
[47] Moyal, J.E.: Quantum mechanics as a statistical theory. In: Mathematical Proceedings of the Cambridge Philosophical Society, 45, Cambridge University Press, pp. 99-124 (1949) · Zbl 0031.33601
[48] Neumann, J., Zur operatorenmethode in der klassischen mechanik, Ann. Math., 33, 3, 587-642, 1932 · JFM 58.1270.04 · doi:10.2307/1968537
[49] Rajski, C., A metric space of discrete probability distributions, Inf. Control, 4, 4, 371-377, 1961 · Zbl 0103.35805 · doi:10.1016/S0019-9958(61)80055-7
[50] Singh, TP, Trace dynamics and division algebras: towards quantum gravity and unification, Z. Naturforschung A, 76, 2, 131-162, 2021 · doi:10.1515/zna-2020-0255
[51] Swingle, B., Spacetime from entanglement, Ann. Rev. Condens. Matter Phys., 9, 345-358, 2018 · doi:10.1146/annurev-conmatphys-033117-054219
[52] Van Raamsdonk, M., Building up space-time with quantum entanglement, Int. J. Mod. Phys. D, 19, 14, 2429-2435, 2010 · Zbl 1213.83073 · doi:10.1142/S0218271810018529
[53] Wheeler, JA; Marlow, AR, Pregeometry motivations and prospects, Quantum Theory and Gravitation, 1, 1980, Academic Press
[54] Wilczek, F.: Notes on Koopman von Neumann mechanics, and a step beyond. Unpublished (2015)
[55] Wolfram, S., A New Kind of Science, 2002, Champaign, Ill: Wolfram Media, Champaign, Ill · Zbl 1022.68084
[56] Wolfram, S., A class of models with the potential to represent fundamental physics, Complex Syst., 2020 · doi:10.25088/complexsystems.29.2.107
[57] Woodhouse, NMJ, Geometric Quantization, 1997, Oxford: Oxford University Press, Oxford · Zbl 0907.58026
[58] Ping, X., Noncommutative Poisson algebras, Am. J. Math., 116, 1, 101-125, 1994 · Zbl 0797.58012 · doi:10.2307/2374983
[59] Zapata-Carratala, C., Arsiwalla, X.D.: An Invitation to Higher Arity Science. arXiv preprint arXiv:2201.09738 (2022)
[60] Zapata-Carratalá, C.; Schich, M.; Beynon, T.; Arsiwalla, XD, Hypermatrix algebra and irreducible arity in higher-order systems: concepts and perspectives, Adv. Complex Syst., 2023 · Zbl 07825310 · doi:10.1142/S0219525923500078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.