×

Elliptic normal curves of even degree and theta functions. (English) Zbl 07881681

Let \(N\) be an integer \(\geq 4\), and \(K\) a field of characteristic not dividing \(N\) with separable closure \(K_{\mathrm s}\). Then an elliptic curve \(E\) over \(K\) can be immersed in \({\mathbb P}^{N-1}\) as a curve of degree \(N\) by means of the linear system of \(|N \{O\}|\), where \(O\) is the origin of \(E\). A classical result going back to Bianchi and Klein states that if \(N\) is odd, this immersion is uniquely determined by specifying a full-level \(N\) structure, namely \(\Gamma(N)\)-structure which is fixing a basis \((S, T)\) of the group \(E[N]\) of \(N\)-torsion points in \(K_{\mathrm s}\) such that the Weil pairings \(e_{N}(S, T)\) become a fixed primitive \(N\)th root of \(1\).
In the present paper, the authors extend this result to the case when \(N\) is even by replacing \[ \Gamma(N) = \left\{ \left. \left( \begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL_{2}({\mathbb Z}) \ \right| \left( \begin{array}{cc} a & b \\ c & d \end{array} \right) \equiv \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \mbox{mod} \ N \right\} \] with its subgroup \[ \Gamma^{(N)}(2N) = \left\{ \left. \left( \begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL_{2}({\mathbb Z}) \ \right| \begin{array}{l} a \equiv d \equiv 1 \ \mbox{mod} \ N, \\ b \equiv c \equiv 0 \ \mbox{mod} \ 2N \end{array} \right\}. \] Denote by \(\mu_{N}\) the group of \(N\)th roots of \(1\) in \(K_{\mathrm s}\). Since a \(\Gamma(N)\)-structure is a symplectic isomorphism \({\mathbb Z}/N {\mathbb Z} \times \mu_{N} \rightarrow E[N]\), a \(\Gamma^{(N)}(2N)\)-structure above a \(\Gamma(N)\)-structure is defined as a pair of symplectic isomorphisms \(\phi_{N} : {\mathbb Z}/N {\mathbb Z} \times \mu_{N} \rightarrow E[N]\) and \(\phi_{2N} : {\mathbb Z}/2N {\mathbb Z} \times \mu_{2N} \rightarrow E[2N]\) satisfying \[ [2] \left( \phi_{2N} (a \, \mbox{mod} \ 2N, \zeta) \right) = \phi_{N} (a \ \mbox{mod} \ N, \zeta^{2}) \] for any \((a \, \mbox{mod} \ 2N, \zeta) \in {\mathbb Z}/2N {\mathbb Z} \times \mu_{2N}\). Then the authors show that when \(N\) is even the immersion \(E \hookrightarrow {\mathbb P}^{N-1}\) is uniquely determined by specifying a \(\Gamma^{(N)}(2N)\)-structure above a \(\Gamma(N)\)-structure from which one obtain the universal elliptic curve over the modular curve associated with \(\Gamma^{(N)}(2N)\). Furthermore, they describe this immersion over \({\mathbb C}\) by \[ \theta_{k}^{(N)}(z, \tau) = \theta_{(\frac{1}{2} - \frac{k}{N}, \frac{N}{2})} (N z, N \tau), \] where \(\theta_{(p, q)}(z, \tau)\) denote the theta functions with characteristic \((p, q)\), and also quadratic equations satisfied by these theta functions.

MSC:

14H52 Elliptic curves
14H42 Theta functions and curves; Schottky problem

References:

[1] Bianchi, L., Ueber die Normalformen dritter und fünfter Stufe des elliptischen Integrals erster Gattung, Math. Ann., 17, 2, 234-262, 1880 · JFM 12.0352.01 · doi:10.1007/BF01443473
[2] Cummins, C., Pauli, S.: Congruence Subgroups of \({PSL}(2,Z)\). https://mathstats.uncg.edu/sites/pauli/congruence/
[3] Fisher, T.A.: On \(5\) and \(7\) descents for elliptic curves. PhD thesis, Cambridge University (2000)
[4] Fisher, TA, Some examples of 5 and 7 descent for elliptic curves over \({\textbf{Q} } \), Journal of the European Mathematical Society, 3, 2, 169-201, 2001 · Zbl 1007.11031 · doi:10.1007/s100970100030
[5] Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52, p. 496. Springer, New York-Heidelberg (1977) · Zbl 0367.14001
[6] Hurwitz, A., Ueber endliche Gruppen linearer Substitutionen, welche in der Theorie der elliptischen Transcendenten auftreten, Math. Ann., 27, 2, 183-233, 1886 · JFM 19.0472.01 · doi:10.1007/BF01452057
[7] Igusa, J.-I.: Theta Functions. Die Grundlehren der mathematischen Wissenschaften, Band 194. Springer, New York-Heidelberg (1972) · Zbl 0251.14016
[8] Jacobi, C.G.J.: Theorie der Elliptischen Funktionen aus den Eigenschaften der Thetareihen abgeleitet. Herausgegeben von A. Kneser. Ostwalds Klass. Exakten Wiss. Akademische Verlagsgesellschaft, Frankfurt am Main
[9] Kajiwara, K.; Kaneko, M.; Nobe, A.; Tsuda, T., Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve, Kyushu Journal of Mathematics, 63, 2, 315-338, 2009 · Zbl 1177.14061 · doi:10.2206/kyushujm.63.315
[10] Klein, F.: Über die elliptischen normalkurven der \(n\)-ten ordnung. Abhandlungen der mathematisch-physikalischen Klasse der Sächsischen Kgl. Gesellschaft der Wissenschaften Bd. 13(Nr. IV) (1885)
[11] Mumford, D.: Varieties defined by quadratic equations. In: Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), pp. 29-100. Edizioni Cremonese, Rome (1970) · Zbl 0198.25801
[12] Mumford, D.: Tata Lectures on Theta. I. Progress in Mathematics, vol. 28. Birkhäuser Boston, Inc., Boston, MA (1983) · Zbl 0509.14049
[13] Vélu, J., Courbes elliptiques munies d’un sous-groupe \({ Z}/n{ Z}\times{ \mu }_n \), Bull. Soc. Math. France Mém., 57, 5-152, 1978 · Zbl 0433.14029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.