×

Difference interior penalty discontinuous Galerkin method for the 3D elliptic equation. (English) Zbl 07878046

Summary: This paper presents a difference interior penalty discontinuous Galerkin method for the 3D elliptic boundary-value problem. The main idea of this method is to combine the finite difference discretization in the \(z\)-direction with the interior penalty discontinuous Galerkin discretization in the \((x, y)\)-plane. One of the advantages of this method is that the solution of 3D problem is transformed into a series of 2D problems, thereby overcoming the computational complexity of traditional interior penalty discontinuous Galerkin method for solving high-dimensional problems and allowing for code reuse. Additionally, we use the interior penalty discontinuous Galerkin method to solve each 2D problem, therefore, this method retains the advantage of the interior penalty discontinuous Galerkin method in dealing with non-matching grids and non-uniform, even anisotropic, polynomial approximation degrees. Then, the error estimates are given for difference interior penalty discontinuous Galerkin method. Finally, numerical experiments demonstrate the accuracy and effectiveness of the difference interior penalty discontinuous Galerkin method.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI

References:

[1] Bank, R. E.; Xu, J., Asymptotically exact a posteriori error estimators. Part I. Grids with superconvergence, SIAM J Numer Anal, 41, 6, 2294-2312, 2003 · Zbl 1058.65116
[2] Bank, R. E.; Xu, J., Asymptotically exact a posteriori error estimators. Part II. General unstructured grids, SIAM J Numer Anal, 41, 6, 2313-2332, 2003 · Zbl 1058.65117
[3] Bank, R. E.; Xu, J.; Zheng, B., Superconvergent derivative recovery for Lagrange triangular elements of degree p on unstructured grids, SIAM J Numer Anal, 45, 5, 2032-2046, 2007 · Zbl 1156.65091
[4] Baranger, J.; Maitre, J. F.; Oudin, F., Connection between finite volume and mixed finite element methods, ESAIM: Math Model Numer Anal, 30, 4, 445-465, 1996 · Zbl 0857.65116
[5] Ben-Artzi, M.; Croisille, J. P.; Fishelov, D., Convergence of a compact scheme for the pure streamfunction formulation of the unsteady Navier-Stokes system, SIAM J Numer Anal, 44, 5, 1997-2024, 2006 · Zbl 1344.76059
[6] Brenner, S. C.; Scott, L. R., The mathematical theory of finite element methods, 1996, Springer: Springer New York
[7] Chen, C., Structure theory of superconvergence of finite elements, 2001, Hunan Academic Press: Hunan Academic Press Changsha
[8] Chen, C.; Huang, Y., High accuracy analysis of the finite element method, 1995, Hunan Academic Tecnique Press: Hunan Academic Tecnique Press Changsha
[9] Chen, Z., BDM mixed methods for a nonlinear elliptic problem, J Comput Appl Math, 53, 2, 207-223, 1994 · Zbl 0819.65129
[10] Chen, Z., The finite element method: its fundamentals and applications in engineering, 2011, World Scientific: World Scientific Publishing · Zbl 1240.74001
[11] Chen, Z., Finite element methods and their applications, scientific computation, 2005, Springer-Verlag: Springer-Verlag Berlin · Zbl 1082.65118
[12] Chen, Z.; Espedal, M.; Ewing, R. E., Continuous-time finite element analysis of multiphase flow in groundwater hydrology, Appl Math, 40, 3, 203-226, 1995 · Zbl 0847.76030
[13] Ciarlet, P. G., The finite element method for elliptic problems, J Appl Mech, 45, 4, 968-969, 1978 · Zbl 0383.65058
[14] Rannacher, R.; Scott, R., Some optimal error estimates for piecewise linear finite element approximations, Math Comp, 38, 158, 437-445, 1982 · Zbl 0483.65007
[15] Samarskii, A. A.; Lazarov, R. D.; Makarov, V. L., Finite difference schemes for differential equations with weak solutions, 1987, Moscow Vissaya Skola: Moscow Vissaya Skola Moscow
[16] Scott, L. R.; Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math Comp, 54, 190, 483-493, 1990 · Zbl 0696.65007
[17] Thomas, J. W., Numerical partial differential equations: conservation laws and elliptic equations, 1999, Springer: Springer New York · Zbl 0927.65109
[18] Thomas, J. W., Numerical partial differential equations: finite difference methods, 1995, Springer: Springer New York · Zbl 0831.65087
[19] Vanselow, R., Relations between FEM and FVM applied to the Poisson equation, Computing, 57, 2, 93-104, 1996 · Zbl 0858.65109
[20] Weiser, A.; Wheeler, M. F., On convergence of block-centered finite differences for elliptic problems, SIAM J Numer Anal, 25, 2, 351-375, 1988 · Zbl 0644.65062
[21] Sü, E., Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes, SIAM J Numer Anal, 28, 5, 1419-1430, 1991 · Zbl 0802.65104
[22] Arnold, D. N.; Brezzi, F.; Cockburn, B., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J Numer Anal, 39, 5, 1749-1779, 2002 · Zbl 1008.65080
[23] Rivière, B., Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation, 2008, SIAM Society for Industrial and Applied Mathematics · Zbl 1153.65112
[24] Di Pietro, D. A.; Ern, A., Mathematical aspects of discontinuous Galerkin methods, 2011, Springer Berlin: Springer Berlin Heidelberg
[25] Zhang, T., Theory and method of discontinuous finite element(in Chinese), 2011, Science Press: Science Press Beijing
[26] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J Numer Anal, 19, 4, 742-760, 1982 · Zbl 0482.65060
[27] Hartmann, R.; Houston, P., Symmetric interior penalty DG methods for the compressible Navier-Stokes equations I: method formulation, Int J Numer Anal Mod, 3, 1, 1-20, 2006 · Zbl 1129.76030
[28] Hartmann, R.; Houston, P., An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations, Comput Phys, 227, 22, 9670-9685, 2008 · Zbl 1359.76220
[29] Yang, W.; Cao, L.; Huang, Y., A new a posteriori error estimate for the interior penalty discontinuous Galerkin method, Int J Numer Anal Mod, 16, 210-224, 2019 · Zbl 1408.65081
[30] Huang, Y.; Li, J., Interior penalty discontinuous Galerkin method for Maxwell’s equations in cold plasma, J Sci Comput, 41, 3, 321-340, 2009 · Zbl 1203.78045
[31] Huang, Y.; Li, J.; Yang, W., Interior penalty DG methods for Maxwell’s equations in dispersive media, Comput Phys, 230, 12, 4559-4570, 2011 · Zbl 1220.78015
[32] Li, K.; Huang, A.; Zhang, W., A dimension split method for the 3-D compressible Navier-Stokes equations in turbomachine, Commun Numer Methods Eng, 18, 1, 1-14, 2002 · Zbl 0999.76080
[33] Hou, Y.; Wei, H., Dimension splitting algorithm for a three-dimensional elliptic equation, Int J Comput Math, 89, 1, 112-127, 2012 · Zbl 1242.65238
[34] He, R.; Feng, X.; Chen, Z., \( H^1\)-Superconvergence of a difference finite element method based on the \(P_1- P_1\) -conforming element on non-uniform meshes for the 3D Poisson equation, Math Comput, 87, 312, 1659-1688, 2018 · Zbl 1471.65171
[35] Feng, X.; He, R.; Chen, Z., Superconvergence in \(H^1\) -norm of a difference finite element method for the heat equation in a 3D spatial domain with almost-uniform mesh, Numer Algorithms, 86, 1, 357-395, 2021 · Zbl 1456.65065
[36] Feng, X.; Lu, X.; He, Y., Difference finite element method for the 3D steady Stokes equations, Appl Math, 173, 418-433, 2022 · Zbl 1482.76078
[37] Feng, X.; Lu, X.; He, Y., Difference finite element method for the 3D steady Navier-Stokes equations, SIAM J Numer Anal, 61, 1, 167-193, 2023 · Zbl 1511.76053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.