×

A decomposition theorem of surface vector fields and spectral structure of the Neumann-Poincaré operator in elasticity. (English) Zbl 07876014

Summary: We prove that the space of vector fields on the boundary of a bounded domain with the Lipschitz boundary in three dimensions is decomposed into three subspaces: elements of the first one extend to inside the domain as divergence-free and rotation-free vector fields, the second one to the outside as divergence-free and rotation-free vector fields, and the third one to both the inside and the outside as divergence-free harmonic vector fields. We then show that each subspace in the decomposition is infinite-dimensional. We also prove under a mild regularity assumption on the boundary that the decomposition is almost direct in the sense that any intersection of two subspaces is finite-dimensional. We actually prove that the dimension of intersection is bounded by the first Betti number of the boundary. In particular, if the boundary is simply connected, then the decomposition is direct. We apply this decomposition theorem to investigate spectral properties of the Neumann-Poincaré operator in elasticity, whose cubic polynomial is known to be compact. We prove that each linear factor of the cubic polynomial is compact on each subspace of decomposition separately and those subspaces characterize eigenspaces of the Neumann-Poincaré operator. We then prove all the results for three dimensions, decomposition of surface vector fields and spectral structure, are extended to higher dimensions. We also prove analogous but different results in two dimensions.

MSC:

47A10 Spectrum, resolvent
31A10 Integral representations, integral operators, integral equations methods in two dimensions
31B10 Integral representations, integral operators, integral equations methods in higher dimensions
35Q74 PDEs in connection with mechanics of deformable solids

References:

[1] Agranovich, M. S., Spectral problems for the Lam\'{e} system with spectral parameter in boundary conditions on smooth or nonsmooth boundary, Russ. J. Math. Phys., 247-281, 1999 · Zbl 1059.74504
[2] Ando, Kazunori, Spectral properties of the Neumann-Poincar\'{e} operator and cloaking by anomalous localized resonance for the elasto-static system, European J. Appl. Math., 189-225, 2018 · Zbl 06903421 · doi:10.1017/S0956792517000080
[3] Ando, Kazunori, Elastic Neumann-Poincar\'{e} operators on three dimensional smooth domains: polynomial compactness and spectral structure, Int. Math. Res. Not. IMRN, 3883-3900, 2019 · Zbl 1444.35049 · doi:10.1093/imrn/rnx258
[4] Ando, Kazunori, Convergence rate for eigenvalues of the elastic Neumann-Poincar\'{e} operator in two dimensions, J. Math. Pures Appl. (9), 211-229, 2020 · Zbl 07222248 · doi:10.1016/j.matpur.2020.06.008
[5] Bott, Raoul, Differential forms in algebraic topology, Graduate Texts in Mathematics, xiv+331 pp., 1982, Springer-Verlag, New York-Berlin · Zbl 0496.55001
[6] Bredon, Glen E., Topology and geometry, Graduate Texts in Mathematics, xiv+557 pp., 1993, Springer-Verlag, New York · Zbl 0791.55001 · doi:10.1007/978-1-4757-6848-0
[7] Calder\'{o}n, A.-P., Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. U.S.A., 1324-1327, 1977 · Zbl 0373.44003 · doi:10.1073/pnas.74.4.1324
[8] Capoferri, Matteo, Topological obstructions to the diagonalisation of pseudodifferential systems, Proc. Amer. Math. Soc. Ser. B, 472-486, 2022 · Zbl 1511.58010 · doi:10.1090/bproc/147
[9] Dahlberg, B. E. J., Boundary value problems for the systems of elastostatics in Lipschitz domains, Duke Math. J., 795-818, 1988 · Zbl 0699.35073 · doi:10.1215/S0012-7094-88-05735-3
[10] Deng, Youjun, On spectral properties of Neuman-Poincar\'{e} operator and plasmonic resonances in 3D elastostatics, J. Spectr. Theory, 767-789, 2019 · Zbl 1435.35372 · doi:10.4171/JST/262
[11] Duduchava, R., Mixed crack type problem in anisotropic elasticity, Math. Nachr., 83-107, 1998 · Zbl 0901.73016 · doi:10.1002/mana.19981910105
[12] Escauriaza, L., On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries, Proc. Amer. Math. Soc., 1069-1076, 1992 · Zbl 0761.35013 · doi:10.2307/2159357
[13] Gesztesy, Fritz, A description of all self-adjoint extensions of the Laplacian and Kre\u{\i }n-type resolvent formulas on non-smooth domains, J. Anal. Math., 53-172, 2011 · Zbl 1231.47044 · doi:10.1007/s11854-011-0002-2
[14] Gilbarg, David, Elliptic partial differential equations of second order, Classics in Mathematics, xiv+517 pp., 2001, Springer-Verlag, Berlin · Zbl 1042.35002
[15] Hatcher, Allen, Algebraic topology, xii+544 pp., 2002, Cambridge University Press, Cambridge · Zbl 1044.55001
[16] Hofmann, Steve, Hardy spaces, singular integrals and the geometry of Euclidean domains of locally finite perimeter, Geom. Funct. Anal., 842-882, 2009 · Zbl 1333.42020 · doi:10.1007/s00039-009-0015-5
[17] Hofmann, Steve, Singular integrals and elliptic boundary problems on regular Semmes-Kenig-Toro domains, Int. Math. Res. Not. IMRN, 2567-2865, 2010 · Zbl 1221.31010 · doi:10.1093/imrn/rnp214
[18] Howell, Kenneth B., Uniqueness in linear elastostatics for problems involving unbounding unbounded bodies, J. Elasticity, 407-427, 1980 · Zbl 0459.73005 · doi:10.1007/BF00040845
[19] Khavinson, Dmitry, Poincar\'{e}’s variational problem in potential theory, Arch. Ration. Mech. Anal., 143-184, 2007 · Zbl 1119.31001 · doi:10.1007/s00205-006-0045-1
[20] Kupradze, V. D., Potential methods in the theory of elasticity, ix+339 pp., 1965, Israel Program for Scientific Translations, Jerusalem; Daniel Davey & Co., Inc., New York · Zbl 0188.56901
[21] Lee, John M., Introduction to smooth manifolds, Graduate Texts in Mathematics, xvi+708 pp., 2013, Springer, New York · Zbl 1258.53002
[22] Mitrea, Irina, Spectral radius properties for layer potentials associated with the elastostatics and hydrostatics equations in nonsmooth domains, J. Fourier Anal. Appl., 385-408, 1999 · Zbl 0932.45004 · doi:10.1007/BF01259379
[23] Mitrea, Marius, Clifford wavelets, singular integrals, and Hardy spaces, Lecture Notes in Mathematics, xii+116 pp., 1994, Springer-Verlag, Berlin · Zbl 0822.42018 · doi:10.1007/BFb0073556
[24] Miyanishi, Yoshihisa, Weyl’s law for the eigenvalues of the Neumann-Poincar\'{e} operators in three dimensions: Willmore energy and surface geometry, Adv. Math., Paper No. 108547, 19 pp., 2022 · Zbl 07567808 · doi:10.1016/j.aim.2022.108547
[25] Miyanishi, Y., Eigenvalues of the Neumann-Poincare operator in dimension 3: Weyl’s law and geometry, St. Petersburg Math. J.. Algebra i Analiz, 248-268, 2019 · Zbl 1513.47041 · doi:10.1090/spmj/1602
[26] Miyanishi, Yoshihisa, Spectral properties of the Neumann-Poincar\'{e} operator in 3D elasticity, Int. Math. Res. Not. IMRN, 8715-8740, 2021 · Zbl 1473.35100 · doi:10.1093/imrn/rnz341
[27] Muskhelishvili, N. I., Singular integral equations, v+447 pp., 1977, Noordhoff International Publishing, Leiden
[28] Rozenblum, G., Eigenvalue asymptotics for polynomially compact pseudodifferential operators, St. Petersburg Math. J., 341-353, 2022 · Zbl 07491000 · doi:10.1090/spmj/1703
[29] Rozenblum, Grigori, The discrete spectrum of the Neumann-Poincar\'{e} operator in 3D elasticity, J. Pseudo-Differ. Oper. Appl., Paper No. 26, 36 pp., 2023 · Zbl 07682222 · doi:10.1007/s11868-023-00520-y
[30] Verchota, Gregory, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains, J. Funct. Anal., 572-611, 1984 · Zbl 0589.31005 · doi:10.1016/0022-1236(84)90066-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.