×

Boundedness and finite-time blow-up in a chemotaxis system with flux limitation and logistic source. (English) Zbl 07873858

Summary: The chemotaxis system \[ \begin{cases} u_t =\Delta u-\chi \nabla \cdot (u|\nabla v|^{p-2}\nabla v)+\lambda u-\mu u^{\kappa}, \\ 0=\Delta v+u-h(u,v) \end{cases} \tag{\(*\)} \] is considered in a smoothly bounded domain \(\Omega \subset \mathbb{R}^n\) (\(n \in \mathbb{N}\)), where \(\chi >0\), \(p >1\), \(\lambda \geq 0\), \(\mu >0\), \(\kappa >1\), and \(h=v\) or \(h=\frac{1}{|\Omega|} \int_{\Omega} u\). It is firstly proved that if \(n=1\) and \(p>1\) is arbitrary, or \(n \geq 2\) and \(p \in (1, \frac{n}{n-1})\), then for all continuous initial data a corresponding no-flux type initial-boundary value problem for \((\ast)\) admits a globally defined and bounded weak solution. Secondly, it is shown that if \(n \geq 2\), \(\Omega = B_R (0) \subset \mathbb{R}^n\) is a ball with some \(R>0\), \(p > \frac{n}{n-1}\) and \(\kappa >1\) is small enough, then one can find a nonnegative radially symmetric function \(u_0\) and a weak solution of \((\ast)\) with initial datum \(u_0\) which blows up in finite time.

MSC:

35B44 Blow-up in context of PDEs
35B45 A priori estimates in context of PDEs
35D30 Weak solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Arumugam, G.; Tyagi, J., Keller-Segel Chemotaxis models: a review, Acta Appl. Math., 171, 6, 2021 · Zbl 1464.35001 · doi:10.1007/s10440-020-00374-2
[2] Bellomo, N.; Winkler, M., A degenerate Chemotaxis system with flux limitation: maximally extended solutions and absence of gradient blow-up, Commun. Partial Differ. Equ., 42, 3, 436-473, 2017 · Zbl 1430.35166 · doi:10.1080/03605302.2016.1277237
[3] Bellomo, N.; Winkler, M., Finite-time blow-up in a degenerate Chemotaxis system with flux limitation, Trans. Amer. Math. Soc. Ser. B, 4, 31-67, 2017 · Zbl 1367.35044 · doi:10.1090/btran/17
[4] Black, T.; Fuest, M.; Lankeit, J., Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic-elliptic Keller-Segel systems, Z. Angew. Math. Phys., 72, 3, 96, 2021 · Zbl 1466.35056 · doi:10.1007/s00033-021-01524-8
[5] Brézis, H.; Strauss, W. A., Semi-linear second-order elliptic equations in \(L^1\), J. Math. Soc. Jpn., 25, 565-590, 1973 · Zbl 0278.35041 · doi:10.2969/jmsj/02540565
[6] Chabrowski, J., On the Neumann problem with \(L^1\) data, Colloq. Math., 107, 2, 301-316, 2007 · Zbl 1263.35005 · doi:10.4064/cm107-2-10
[7] Chiyo, Y.; Marras, M.; Tanaka, Y.; Yokota, T., Blow-up phenomena in a parabolic-elliptic-elliptic attraction-repulsion Chemotaxis system with superlinear logistic degradation, Nonlinear Anal., 212, 2021 · Zbl 1472.35061 · doi:10.1016/j.na.2021.112550
[8] Cieślak, T.; Winkler, M., Finite-time blow-up in a quasilinear system of Chemotaxis, Nonlinearity, 21, 5, 1057-1076, 2008 · Zbl 1136.92006 · doi:10.1088/0951-7715/21/5/009
[9] Fuest, M., Approaching optimality in blow-up results for Keller-Segel systems with logistic-type dampening, NoDEA Nonlinear Differ. Equ. Appl., 28, 2, 16, 2021 · Zbl 1471.35062 · doi:10.1007/s00030-021-00677-9
[10] Heihoff, F., On the existence of global smooth solutions to the parabolic-elliptic Keller-Segel system with irregular initial data, J. Dyn. Differ. Equ., 35, 2, 1693-1717, 2023 · Zbl 1516.35423 · doi:10.1007/s10884-021-09950-y
[11] Ishida, S.; Yokota, T., Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst., Ser. B, 18, 10, 2569-2596, 2013 · Zbl 1277.35071
[12] Jäger, W.; Luckhaus, S., On explosions of solutions to a system of partial differential equations modelling Chemotaxis, Trans. Am. Math. Soc., 329, 2, 819-824, 1992 · Zbl 0746.35002 · doi:10.1090/S0002-9947-1992-1046835-6
[13] Jaiswal, A.; Tyagi, J., Finite time blow-up in a parabolic-elliptic Keller-Segel system with flux dependent chemotactic coefficient, Nonlinear Anal., Real World Appl., 75, 2024 · Zbl 1526.35086 · doi:10.1016/j.nonrwa.2023.103985
[14] Jaiswal, A.; Rani, P.; Tyagi, J., Global weak solutions of a parabolic-elliptic Keller-Segel system with gradient dependent chemotactic coefficients, Discrete Contin. Dyn. Syst., Ser. B, 28, 7, 4144-4166, 2023 · Zbl 1512.92005 · doi:10.3934/dcdsb.2023002
[15] Kang, K.; Stevens, A., Blowup and global solutions in a Chemotaxis-growth system, Nonlinear Anal., 135, 57-72, 2016 · Zbl 1343.35045 · doi:10.1016/j.na.2016.01.017
[16] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 3, 399-415, 1970 · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[17] Kohatsu, S., Finite-time blow-up of weak solutions to a Chemotaxis system with gradient dependent chemotactic sensitivity, J. Math. Anal. Appl., 531, 1-2, 2024 · Zbl 1541.35094 · doi:10.1016/j.jmaa.2023.127820
[18] Kohatsu, S.; Yokota, T., Stability of constant equilibria in a Keller-Segel system with gradient dependent chemotactic sensitivity, Matematiche, 78, 1, 213-237, 2023 · Zbl 1527.35074
[19] Marras, M.; Vernier-Piro, S.; Yokota, T., Behavior in time of solutions of a Keller-Segel system with flux limitation and source term, NoDEA Nonlinear Differ. Equ. Appl., 30, 5, 65, 2023 · Zbl 1523.35072 · doi:10.1007/s00030-023-00874-8
[20] Mizukami, M.; Tanaka, Y., Finite-time blow-up in a two-species Chemotaxis-competition model with single production, Arch. Math., 59, 2, 215-222, 2023 · Zbl 1538.35090
[21] Negreanu, M.; Tello, J. I., On a parabolic-elliptic system with gradient dependent chemotactic coefficient, J. Differ. Equ., 265, 3, 733-751, 2018 · Zbl 1391.35186 · doi:10.1016/j.jde.2018.01.040
[22] Osaki, K.; Tsujikawa, T.; Yagi, A.; Mimura, M., Exponential attractor for a Chemotaxis-growth system of equations, Nonlinear Anal., Theory Methods Appl., 51, 1, 119-144, 2002 · Zbl 1005.35023 · doi:10.1016/S0362-546X(01)00815-X
[23] Tanaka, Y., Finite-time blow-up in a two-species Chemotaxis-competition model with degenerate diffusion, Acta Appl. Math., 186, 13, 2023 · Zbl 1522.35521 · doi:10.1007/s10440-023-00592-4
[24] Tanaka, Y.; Yokota, T., Finite-time blow-up in a quasilinear degenerate parabolic-elliptic Chemotaxis system with logistic source and nonlinear production, Discrete Contin. Dyn. Syst., Ser. B, 28, 1, 262-286, 2023 · Zbl 1498.35115 · doi:10.3934/dcdsb.2022075
[25] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252, 1, 692-715, 2012 · Zbl 1382.35127 · doi:10.1016/j.jde.2011.08.019
[26] Tello, J. I., Blow up of solutions for a parabolic-elliptic Chemotaxis system with gradient dependent chemotactic coefficient, Commun. Partial Differ. Equ., 47, 2, 307-345, 2022 · Zbl 1491.35071 · doi:10.1080/03605302.2021.1975132
[27] Tello, J. I.; Winkler, M., A Chemotaxis system with logistic source, Commun. Partial Differ. Equ., 32, 4-6, 849-877, 2007 · Zbl 1121.37068 · doi:10.1080/03605300701319003
[28] Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis, 1977, Amsterdam: North-Holland, Amsterdam · Zbl 0383.35057
[29] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 12, 2889-2905, 2010 · Zbl 1190.92004 · doi:10.1016/j.jde.2010.02.008
[30] Winkler, M., Boundedness in the higher-dimensional parabolic-parabolic Chemotaxis system with logistic source, Commun. Partial Differ. Equ., 35, 8, 1516-1537, 2010 · Zbl 1290.35139 · doi:10.1080/03605300903473426
[31] Winkler, M., Blow-up in a higher-dimensional Chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384, 2, 261-272, 2011 · Zbl 1241.35028 · doi:10.1016/j.jmaa.2011.05.057
[32] Winkler, M., How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24, 5, 809-855, 2014 · Zbl 1311.35040 · doi:10.1007/s00332-014-9205-x
[33] Winkler, M., Boundedness and large time behavior in a three-dimensional Chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. Partial Differ. Equ., 54, 4, 3789-3828, 2015 · Zbl 1333.35104 · doi:10.1007/s00526-015-0922-2
[34] Winkler, M., A critical blow-up exponent in a Chemotaxis system with nonlinear signal production, Nonlinearity, 31, 5, 2031-2056, 2018 · Zbl 1391.35240 · doi:10.1088/1361-6544/aaaa0e
[35] Winkler, M., Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Z. Angew. Math. Phys., 69, 2, 69, 2018 · Zbl 1395.35048 · doi:10.1007/s00033-018-0935-8
[36] Winkler, M., Blow-up profiles and life beyond blow-up in the fully parabolic Keller-Segel system, J. Anal. Math., 141, 2, 585-624, 2020 · Zbl 1459.92019 · doi:10.1007/s11854-020-0109-4
[37] Winkler, M., A critical blow-up exponent for flux limitation in a Keller-Segel system, Indiana Univ. Math. J., 71, 4, 1437-1465, 2022 · Zbl 1501.35094 · doi:10.1512/iumj.2022.71.9042
[38] Xiang, T., How strong a logistic damping can prevent blow-up for the minimal Keller-Segel Chemotaxis system?, J. Math. Anal. Appl., 459, 2, 1172-1200, 2018 · Zbl 1380.35032 · doi:10.1016/j.jmaa.2017.11.022
[39] Yan, J.; Li, Y., Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivity, Electron. J. Differ. Equ., 2020, 2020 · Zbl 1454.35212
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.