×

Total value adjustment of Bermudan option valuation under pure jump Lévy fluctuations. (English) Zbl 07870664


MSC:

91Gxx Actuarial science and mathematical finance
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
60Gxx Stochastic processes

References:

[1] Salvador, B.; Oosterlee, C. W., Total value adjustment for a stochastic volatility model. A comparison with the Black-Scholes model, Appl. Math. Comput., 391, 125489, 2020 · Zbl 1479.91415 · doi:10.1016/j.amc.2020.125489
[2] Goudenège, L.; Molent, A.; Zanette, A., Computing credit valuation adjustment solving coupled PIDEs in the Bates model, Comput. Manag. Sci., 17, 163-178, 2020 · Zbl 07304207 · doi:10.1007/s10287-020-00365-6
[3] Gregory, J., Counterparty Credit Risk and Credit Value Adjustment: A Continuing Challenge for Global Financial Markets, 2012, John Wiley & Sons
[4] Kenyon, C., “Completing CVA and liquidity: Firm-level positions and collateralized trades” (2010); see https://ssrn.com/abstract=1677857.
[5] Gregory, J., The xVA Challenge: Counterparty Credit Risk, Funding, Collateral and Capital, 2015, John Wiley & Sons
[6] Ruiz, I., A complete XVA valuation framework: Why the “law of one price” is dead, iRuiz Consulting, 12, 1-23, 2015
[7] Green, A. D., Kenyon, C., and Dennis, C., “KVA: Capital valuation adjustment,” Risk, December 2014; see https://ssrn.com/abstract=2400324.
[8] Burgard, C.; Kjaer, M., Partial differential equation representations of derivatives with bilateral counterparty risk and funding costs, J. Credit Risk, 7, 75-93, 2011 · doi:10.21314/JCR.2011.131
[9] Arregui, I.; Salvador, B.; Vázquez, C., PDE models and numerical methods for total value adjustment in European and American options with counterparty risk, Appl. Math. Comput., 308, 31-53, 2017 · Zbl 1411.91613 · doi:10.1016/j.amc.2017.03.008
[10] Black, F. and Scholes, M., “The pricing of options and corporate liabilities,” in World Scientific Reference on Contingent Claims Analysis in Corporate Finance: Volume 1: Foundations of CCA and Equity Valuation (World Scientific, 2019), pp. 3-21. · Zbl 1092.91524
[11] Borovykh, A.; Pascucci, A.; Oosterlee, C. W., Efficient computation of various valuation adjustments under local Lévy models, SIAM J. Financ. Math., 9, 251-273, 2018 · Zbl 1408.91230 · doi:10.1137/16M1099005
[12] de Graaf, C.; Kandhai, D.; Sloot, P., Efficient estimation of sensitivities for counterparty credit risk with the finite difference Monte Carlo method, J. Comput. Finance, 21, 83-113, 2016 · doi:10.21314/JCF.2016.325
[13] Carr, P.; Geman, H.; Madan, D. B.; Yor, M., The fine structure of asset returns: An empirical investigation, J. Bus., 75, 305-332, 2002 · doi:10.1086/338705
[14] Oosterlee, C. W.; Grzelak, L. A., Mathematical Modeling and Computation in Finance: With Exercises and Python and Matlab Computer Codes, 2019, World Scientific · Zbl 1427.91001
[15] Elliott, R. J.; Osakwe, C.-J. U., Option pricing for pure jump processes with Markov switching compensators, Finance Stoch., 10, 250-275, 2006 · Zbl 1101.91034 · doi:10.1007/s00780-006-0004-6
[16] Geman, H., Pure jump Lévy processes for asset price modelling, J. Bank. Finance, 26, 1297-1316, 2002 · doi:10.1016/S0378-4266(02)00264-9
[17] Cartea, A.; del Castillo-Negrete, D., Fractional diffusion models of option prices in markets with jumps, Phys. A, 374, 749-763, 2007 · doi:10.1016/j.physa.2006.08.071
[18] Li, C.; Deng, W., High order schemes for the tempered fractional diffusion equations, Adv. Comput. Math., 42, 543-572, 2016 · Zbl 1347.65136 · doi:10.1007/s10444-015-9434-z
[19] Fang, F.; Oosterlee, C. W., A novel pricing method for European options based on Fourier-cosine series expansions, SIAM J. Sci. Comput., 31, 826-848, 2009 · Zbl 1186.91214 · doi:10.1137/080718061
[20] Unal, H.; Madan, D.; Güntay, L., Pricing the risk of recovery in default with absolute priority rule violation, J. Bank. Finance, 27, 1001-1025, 2003 · doi:10.1016/S0378-4266(02)00255-8
[21] Schläfer, T.; Uhrig-Homburg, M., Is recovery risk priced?, J. Bank. Finance, 40, 257-270, 2014 · doi:10.1016/j.jbankfin.2013.11.033
[22] Hull, J. C., Options, Futures and Other Derivatives, 2019, Pearson · Zbl 1087.91025
[23] de Graaf, C.
[24] Duan, J., An Introduction to Stochastic Dynamics, 2015, New York Cambridge University Press · Zbl 1359.60003
[25] Xu, Y.; Gu, R.; Zhang, H.; Xu, W.; Duan, J., Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise, Phys. Rev. E, 83, 056215, 2011 · doi:10.1103/PhysRevE.83.056215
[26] Zan, W.; Xu, Y.; Kurths, J.; Chechkin, A. V.; Metzler, R., Stochastic dynamics driven by combined Lévy-Gaussian noise: Fractional Fokker-Planck-Kolmogorov equation and solution, J. Phys. A: Math. Theor., 53, 385001, 2020 · Zbl 1519.60064 · doi:10.1088/1751-8121/aba654
[27] Madan, D.; Yor, M.
[28] Sioutis, S. J.
[29] Rosiński, J., “Series representations of Lévy processes from the perspective of point processes,” in Lévy Processes (Springer, 2001), pp. 401-415. · Zbl 0985.60048
[30] Chen, X.; Ding, D.; Lei, S.-L.; Wang, W., An implicit-explicit preconditioned direct method for pricing options under regime-switching tempered fractional partial differential models, Numer. Algorithms, 87, 939-965, 2021 · Zbl 1476.65167 · doi:10.1007/s11075-020-00994-7
[31] She, M.; Li, L.; Tang, R.; Li, D., A novel numerical scheme for a time fractional Black-Scholes equation, J. Appl. Math. Comput., 66, 853-870, 2021 · Zbl 1479.91446 · doi:10.1007/s12190-020-01467-9
[32] Cai, R.; He, Z.; Liu, Y.; Duan, J.; Kurths, J.; Li, X., Effects of Lévy noise on the Fitzhugh-Nagumo model: A perspective on the maximal likely trajectories, J. Theor. Biol., 480, 166-174, 2019 · Zbl 1420.92010 · doi:10.1016/j.jtbi.2019.08.010
[33] Cai, R.; Liu, Y.; Duan, J.; Abebe, A. T., State transitions in the Morris-Lecar model under stable Lévy noise, Eur. Phys. J. B, 93, 1-9, 2020 · Zbl 1516.91051 · doi:10.1140/epjb/e2019-100298-3
[34] Herrmann, R., Fractional Calculus: An Introduction for Physicists, 2011, World Scientific · Zbl 1232.26006
[35] Kirkpatrick, K.; Zhang, Y., Fractional Schrödinger dynamics and decoherence, Phys. D., 332, 41-54, 2016 · Zbl 1415.65235 · doi:10.1016/j.physd.2016.05.015
[36] Zeng, C.; Yi, M.; Mei, D., Stochastic Delay Kinetics and Its Application, 2020, Science Press
[37] Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 298-305, 2000 · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[38] Zaslavsky, G.; Edelman, M.; Tarasov, V., Dynamics of the chain of forced oscillators with long-range interaction: From synchronization to chaos, Chaos, 17, 043124, 2007 · Zbl 1163.37388 · doi:10.1063/1.2819537
[39] Li, D.; Zhang, C., Long time numerical behaviors of fractional pantograph equations, Math. Comput. Simul., 172, 244-257, 2020 · Zbl 1482.34189 · doi:10.1016/j.matcom.2019.12.004
[40] Zhang, Q.; Hesthaven, J. S.; Sun, Z.-Z.; Ren, Y., Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg-Landau equation, Adv. Comput. Math., 47, 35, 2021 · Zbl 1480.65230 · doi:10.1007/s10444-021-09862-x
[41] Zhang, G.; Zhu, R., Runge-Kutta convolution quadrature methods with convergence and stability analysis for nonlinear singular fractional integro-differential equations, Commun. Nonlinear Sci. Numer. Simul., 84, 105132, 2020 · Zbl 1450.65182 · doi:10.1016/j.cnsns.2019.105132
[42] Sabzikar, F.; Meerschaert, M. M.; Chen, J., Tempered fractional calculus, J. Comput. Phys., 293, 14-28, 2015 · Zbl 1349.26017 · doi:10.1016/j.jcp.2014.04.024
[43] Guo, X.; Li, Y., Valuation of American options under the CGMY model, Quant. Finance, 16, 1529-1539, 2016 · Zbl 1400.91594 · doi:10.1080/14697688.2016.1158854
[44] Dimitrov, Y., Numerical approximations for fractional differential equations, J. Fract. Calc. Appl., 5, 3, 1-45, 2014
[45] Sun, Z., Numerical Methods of Partial Differential Equations, 2012, Science Press
[46] Zhang, H.; Liu, F.; Turner, I.; Chen, S., The numerical simulation of the tempered fractional Black-Scholes equation for European double barrier option, Appl. Math. Model., 40, 5819-5834, 2016 · Zbl 1465.91131 · doi:10.1016/j.apm.2016.01.027
[47] Shen, Y.; Van Der Weide, J. A.; Anderluh, J. H., A benchmark approach of counterparty credit exposure of Bermudan option under Lévy process: The Monte Carlo-COS method, Procedia Comput. Sci., 18, 1163-1171, 2013 · doi:10.1016/j.procs.2013.05.282
[48] Kienitz, J.; Wetterau, D., Financial Modelling: Theory, Implementation and Practice with MATLAB Source, 2013, John Wiley & Sons
[49] Bol, G.; Rachev, S. T.; Würth, R., Risk Assessment: Decisions in Banking and Finance, 2008, Springer Science & Business Media
[50] Munro, A., Wong, B.et al., “Monetary policy and funding spreads,” Technical Report, Reserve Bank of New Zealand, 2014.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.