×

Solving a Dirichlet problem on unbounded domains via a conformal transformation. (English) Zbl 07867547

Summary: In this paper, we solve the \(p\)-Dirichlet problem for Besov boundary data on unbounded uniform domains with bounded boundaries when the domain is equipped with a doubling measure satisfying a Poincaré inequality. This is accomplished by studying a class of transformations that have been recently shown to render the domain bounded while maintaining uniformity. These transformations conformally deform the metric and measure in a way that depends on the distance to the boundary of the domain and, for the measure, a parameter \(p\). We show that the transformed measure is doubling and the transformed domain supports a Poincaré inequality. This allows us to transfer known results for bounded uniform domains to unbounded ones, including trace results and Adams-type inequalities, culminating in a solution to the Dirichlet problem for boundary data in a Besov class.

MSC:

31E05 Potential theory on fractals and metric spaces
30L99 Analysis on metric spaces
49Q05 Minimal surfaces and optimization
26A45 Functions of bounded variation, generalizations

References:

[1] Aikawa, H.; Shanmugalingam, N., Carleson-type estimates for \(p\)-harmonic functions and the conformal Martin boundary of John domains in metric measure spaces, Michigan Math. J., 53, 1, 165-188, 2005 · Zbl 1076.31006 · doi:10.1307/mmj/1114021091
[2] Björn, A., Removable singularities for bounded \(p\)-harmonic and quasi(super)harmonic functions on metric spaces, Ann. Acad. Sci. Fenn. Math., 31, 1, 71-95, 2006 · Zbl 1208.31004
[3] Björn, A., Björn, J.: Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zürich. xii+403 pp (2011) · Zbl 1231.31001
[4] Björn, A.; Björn, J.; Li, X., Sphericalization and \(p\)-harmonic functions on unbounded domains in Ahlfors regular spaces, J. Math. Anal. Appl., 474, 2, 852-875, 2019 · Zbl 1417.30056 · doi:10.1016/j.jmaa.2019.01.071
[5] Björn, A.; Björn, J.; Shanmugalingam, N., The Dirichlet problem for p-harmonic functions on metric spaces, J. Reine Angew. Math., 556, 173-203, 2003 · Zbl 1018.31004
[6] Björn, J.; MacManus, P.; Shanmugalingam, N., Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces, J. Anal. Math., 85, 339-369, 2001 · Zbl 1003.31004 · doi:10.1007/BF02788087
[7] Björn, J.; Shanmugalingam, N., Poincaré inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces, J. Math. Anal. Appl., 332, 190-208, 2007 · Zbl 1132.46021 · doi:10.1016/j.jmaa.2006.09.064
[8] Bonk, M., Heinonen, J., Koskela, P.: Uniformizing Gromov hyerbolic spaces. Astérique 270, vi+99 (2001) · Zbl 0970.30010
[9] Bonk, M.; Kleiner, B., Rigidity for quasi-Möbius group actions, J. Differ. Geom., 61, 1, 81-106, 2002 · Zbl 1044.37015 · doi:10.4310/jdg/1090351321
[10] Buckley, SM; Herron, DA; Xie, X., Metric space inversions, quasihyperbolic distance, and uniform spaces, Indiana Univ. Math. J., 57, 2, 837-890, 2008 · Zbl 1160.30006
[11] Capogna, L., Kline, J., Korte, R., Shanmugalingam, N., Snipes, M.: Neumann problems for \(p\)-harmonic functions, and induced nonlocal opertors in metric measure spaces. Preprint, (2022). arXiv:2204.00571
[12] Durand-Cartagena, E.; Li, X., Preservation of bounded geometry under sphericalization and flattening: quasiconvexity and \(\infty \)-Poincaré inequality, Ann. Acad. Sci. Fenn. Math., 42, 1, 303-324, 2017 · Zbl 1361.30105 · doi:10.5186/aasfm.2017.4221
[13] Durand-Cartagena, E.; Li, X., Preservation of \(p\)-Poincaré inequality for large p under sphericalization and flattening, Illinois J. Math., 59, 4, 1043-1069, 2015 · Zbl 1361.31015 · doi:10.1215/ijm/1488186020
[14] Evans, LC; Gariepy, RF, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics series, 1992, Boca Raton: CRC Press, Boca Raton · Zbl 0804.28001
[15] Gibara, R.; Shanmugalingam, N., Conformal transformation of uniform domains under weights that depend on distance to the boundary, Anal. Geom. Metr. Spaces, 10, 1, 297-312, 2022 · Zbl 1502.30157 · doi:10.1515/agms-2022-0141
[16] Hansevi, D., The Perron method for \(p\)-harmonic functions in unbounded sets in \({{\mathbb{R} }}^n\) and metric spaces, Math. Z., 288, 1-2, 55-74, 2018 · Zbl 1397.31004 · doi:10.1007/s00209-017-1877-0
[17] Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Amer. Math. Soc. 145(688), x+101 pp (2000) · Zbl 0954.46022
[18] Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer Universitext 151 pp (2001) · Zbl 0985.46008
[19] Heinonen, J.; Koskela, P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181, 1, 1-61, 1998 · Zbl 0915.30018 · doi:10.1007/BF02392747
[20] Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev spaces on metric measure spaces: an approach based on upper gradients. New Math. Monogra. 27, Cambridge University Press, i-xi+448 (2015) · Zbl 1332.46001
[21] Herron, D.; Shanmugalingam, N.; Xie, X., Uniformity from Gromov hyperbolicity, Illinois J. Math., 52, 4, 1065-1109, 2008 · Zbl 1189.30055 · doi:10.1215/ijm/1258554351
[22] Holopainen, I.; Shanmugalingam, N., Singular functions on metric measure spaces, Collect. Math., 53, 3, 313-332, 2002 · Zbl 1039.31016
[23] Jonsson, A.; Wallin, H., The trace to subsets of Rn of Besov spaces in the general case, Anal. Math., 6, 3, 223-254, 1980 · Zbl 0462.46024 · doi:10.1007/BF01907468
[24] Kallunki, S.; Shanmugalingam, N., Modulus and continuous capacity, Ann. Acad. Sci. Fenn. Math., 26, 2, 455-464, 2001 · Zbl 1002.31004
[25] Keith, S.; Zhong, X., The Poincaré inequality is an open ended condition, Ann. Math. (2), 167, 2, 575-599, 2008 · Zbl 1180.46025 · doi:10.4007/annals.2008.167.575
[26] Kinnunen, J.; Shanmugalingam, N., Regularity of quasi-minimizers on metric spaces, Manuscr. Math., 105, 3, 401-423, 2001 · Zbl 1006.49027 · doi:10.1007/s002290100193
[27] Koskela, P.; Lehrbäck, J., Weighted pointwise Hardy inequalities, J. Lond. Math. Soc. (2), 79, 3, 757-779, 2009 · Zbl 1183.26026 · doi:10.1112/jlms/jdp013
[28] Koskela, P.; MacManus, P., Quasiconformal mappings and Sobolev spaces, Stud. Math., 131, 1, 1-17, 1998 · Zbl 0918.30011
[29] Li, X.: Preservation of bounded geometry under transformations of metric spaces, Thesis (Ph.D.)-University of Cincinnati (2015), ProQuest LLC, 140 pp
[30] Luukkainen, J.; Saksman, E., Every complete doubling metric space carries a doubling measure, Proc. Am. Math. Soc., 126, 2, 531-534, 1998 · Zbl 0897.28007 · doi:10.1090/S0002-9939-98-04201-4
[31] Mäkäläinen, T., Adams inequality on metric measure spaces, Rev. Mat. Iberoamericana, 25, 2, 533-558, 2009 · Zbl 1186.46031 · doi:10.4171/rmi/575
[32] Malý, L.: Trace and extension theorems for Sobolev-type functions in metric spaces, Preprint, (2017). arXiv:1704.06344
[33] Maz’ya, V.: Sobolev spaces: with applications to elliptic partial differential equations, second, revised and augmented edition, Grundlehren der mathematischen Wissenschaften, 342 Springer, Heidelberg. xxviii+866 pp (2011) · Zbl 1217.46002
[34] Shanmugalingam, N., Harmonic functions on metric spaces, Illinois J. Math., 45, 3, 1021-1050, 2001 · Zbl 0989.31003 · doi:10.1215/ijm/1258138166
[35] Vodop’yanov, S.K., Greshnov, A.V.: On extension of functions of bounded mean oscillation from domains in a space of homogeneous type with intrinsic metric. Sibirsk. Mat. Zh., 36(5), 1015-1048 (1995) · Zbl 0865.30029
[36] Vodop’yanov, S.K., Greshnov, A.V.: On extension of functions of bounded mean oscillation from domains in a space of homogeneous type with intrinsic metric. Siber. Math. J. 36(5), 873-901 (1995) · Zbl 0865.30029
[37] Vol’berg, A.L., Konyagin, S.V.: On measures with the doubling condition. Izv. Akad. Nauk SSSR Ser. Mat. 51(3), 666-675 (1987); translation in Math. USSR-Izv. 30(3), 629-638 (1988) · Zbl 0727.28012
[38] Zhou, Q., Li, Y., Li, X.: Sphericalizations and applications in Gromov hyperbolic spaces. J. Math. Anal. Appl. 509(1), 125948 (2022) · Zbl 1489.53061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.