×

A posteriori error estimation for numerical model reduction in computational homogenization of porous media. (English) Zbl 07864079

Summary: Numerical model reduction is adopted for solving the microscale problem that arizes from computational homogenization of a model problem of porous media with displacement and pressure as unknown fields. A reduced basis is obtained for the pressure field using (i) spectral decomposition (SD) and (ii) proper orthogonal decomposition (POD). This strategy has been used in previous work – the main contribution of this article is the extension with an a posteriori estimator for assessing the error in (i) energy norm and in (ii) a given quantity of interest. The error estimator builds on previous work by the authors; the novelty presented in this article is the generalization of the estimator to a coupled problem, and, more importantly, to accommodate the estimator for a POD basis rather than the SD basis. Guaranteed, fully computable and low-cost bounds are derived and the performance of the error estimates is demonstrated via numerical results.
{© 2020 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.}

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
74Qxx Homogenization, determination of effective properties in solid mechanics
74Sxx Numerical and other methods in solid mechanics

Software:

Gmsh

References:

[1] LarssonFredrik, RunessonKenneth. Adaptive bridging of scales in continuum modeling based on error control. Int J Multiscale Comput Eng. 2008;6:371‐392. https://doi.org/10.1615/IntJMultCompEng.v6.i4.80. · doi:10.1615/IntJMultCompEng.v6.i4.80
[2] LarssonF, RunessonK. On two‐scale adaptive FE analysis of micro‐heterogeneous media with seamless scale‐bridging. Comput Methods Appl Mech Eng. 2011;200(37):2662‐2674. https://doi.org/10.1016/j.cma.2010.10.012. · Zbl 1230.74186 · doi:10.1016/j.cma.2010.10.012
[3] FishJ, YuanZ. Multiscale enrichment based on partition of unity for nonperiodic fields and nonlinear problems. Comput Mech. 2007;40(2):249‐259. https://doi.org/10.1007/s00466‐006‐0095‐0. · Zbl 1163.74051 · doi:10.1007/s00466‐006‐0095‐0
[4] OskayC, FishJ. On calibration and validation of eigendeformation‐based multiscale models for failure analysis of heterogeneous systems. Comput Mech. 2008;42(2):181‐195. https://doi.org/10.1007/s00466‐007‐0197‐3. · Zbl 1304.74053 · doi:10.1007/s00466‐007‐0197‐3
[5] DvorakGJ, BenvenisteY. On transformation strains and uniform fields in multiphase elastic media. Proc R Soc Lond A Math Phys Sci. 1992;437(1900):291‐310. https://doi.org/10.1098/rspa.1992.0062. · Zbl 0748.73003 · doi:10.1098/rspa.1992.0062
[6] MichelJC, SuquetP. Nonuniform transformation field analysis. Int J Solids Struct. 2003;40(25):6937‐6955. https://doi.org/10.1016/S0020‐7683(03)00346‐9. · Zbl 1057.74031 · doi:10.1016/S0020‐7683(03)00346‐9
[7] MichelJC, SuquetP. Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Eng. 2004;193(48):5477‐5502. https://doi.org/10.1016/j.cma.2003.12.071. · Zbl 1112.74471 · doi:10.1016/j.cma.2003.12.071
[8] FritzenF, BöhlkeT. Reduced basis homogenization of viscoelastic composites. Compos Sci Technol. 2013;76:84‐91. https://doi.org/10.1016/j.compscitech.2012.12.012. · doi:10.1016/j.compscitech.2012.12.012
[9] FritzenF, LeuschnerM. Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput Methods Appl Mech Eng. 2013;260:143‐154. https://doi.org/10.1016/j.cma.2013.03.007. · Zbl 1286.74081 · doi:10.1016/j.cma.2013.03.007
[10] FritzenF, HodappM, LeuschnerM. GPU accelerated computational homogenization based on a variational approach in a reduced basis framework. Comput Methods Appl Mech Eng. 2014;278:186‐217. https://doi.org/10.1016/j.cma.2014.05.006. · Zbl 1423.74881 · doi:10.1016/j.cma.2014.05.006
[11] FritzenF, LeuschnerM. Nonlinear reduced order homogenization of materials including cohesive interfaces. Comput Mech. 2015;56(1):131‐151. https://doi.org/10.1007/s00466‐015‐1163‐0. · Zbl 1329.74240 · doi:10.1007/s00466‐015‐1163‐0
[12] JänickeR, LarssonF, RunessonK, SteebH. Numerical identification of a viscoelastic substitute model for heterogeneous poroelastic media by a reduced order homogenization approach. Comput Methods Appl Mech Eng. 2016;298:108‐120. https://doi.org/10.1016/j.cma.2015.09.024. · Zbl 1425.74400 · doi:10.1016/j.cma.2015.09.024
[13] NguyenNC. A multiscale reduced‐basis method for parametrized elliptic partial differential equations with multiple scales. J Comput Phys. 2008;227(23):9807‐9822. https://doi.org/10.1016/j.jcp.2008.07.025. · Zbl 1155.65391 · doi:10.1016/j.jcp.2008.07.025
[14] EfendievY, GalvisJ, ThominesF. A systematic coarse‐scale model reduction technique for parameter‐dependent flows in highly heterogeneous media and its applications. Multiscale Model Simulat. 2012;10(4):1317‐1343. https://doi.org/10.1137/110853030. · Zbl 1264.76088 · doi:10.1137/110853030
[15] EfendievY, GalvisJ, GildinE. Local-global multiscale model reduction for flows in high‐contrast heterogeneous media. J Comput Phys. 2012;231(24):8100‐8113. https://doi.org/10.1016/j.jcp.2012.07.032. · doi:10.1016/j.jcp.2012.07.032
[16] HernándezJA, OliverJ, HuespeAE, CaicedoMA, CanteJC. High‐performance model reduction techniques in computational multiscale homogenization. Comput Methods Appl Mech Eng. 2014;276:149‐189. https://doi.org/10.1016/j.cma.2014.03.011. · Zbl 1423.74785 · doi:10.1016/j.cma.2014.03.011
[17] MemarnahavandiA, LarssonF, RunessonK. A goal‐oriented adaptive procedure for the quasi‐continuum method with cluster approximation. Comput Mech. 2015;55(4):617‐642. https://doi.org/10.1007/s00466‐015‐1127‐4. · Zbl 1334.74083 · doi:10.1007/s00466‐015‐1127‐4
[18] AbdulleA, BaiY, VilmartG. Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Discr Continu Dyn Syst Ser S. 2015;8(1):91‐118. http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=101022014. · Zbl 1304.65245
[19] AbdulleA, BaiY. Adaptive reduced basis finite element heterogeneous multiscale method. Comput Methods Appl Mech Eng. 2013;257:203‐220. https://doi.org/10.1016/j.cma.2013.01.002. · Zbl 1286.74088 · doi:10.1016/j.cma.2013.01.002
[20] BoyavalS. Reduced‐basis approach for homogenization beyond the periodic setting. Multiscale Model Simulat. 2008;7(1):466‐494. https://doi.org/10.1137/070688791. · Zbl 1156.74358 · doi:10.1137/070688791
[21] KerfridenP, RódenasJJ, BordasSP‐A. Certification of projection‐based reduced order modelling in computational homogenisation by the constitutive relation error. Int J Numer Methods Eng. 2014;97(6):395‐422. https://doi.org/10.1002/nme.4588. · Zbl 1352.74265 · doi:10.1002/nme.4588
[22] ChamoinL, LegollF. A posteriori error estimation and adaptive strategy for the control of MsFEM computations. Comput Methods Appl Mech Eng. 2018;336:1‐38. https://doi.org/10.1016/j.cma.2018.02.016. · Zbl 1440.65191 · doi:10.1016/j.cma.2018.02.016
[23] AggestamE, LarssonF, RunessonK, EkreF. Numerical model reduction with error control in computational homogenization of transient heat flow. Comput Methods Appl Mech Eng. 2017;326:193‐222. https://doi.org/10.1016/j.cma.2017.08.006. · Zbl 1439.74329 · doi:10.1016/j.cma.2017.08.006
[24] EkreF, LarssonF, RunessonK. On error controlled numerical model reduction in FE2‐analysis of transient heat flow. Int J Numer Methods Eng. 2019;119(1):38‐73. https://doi.org/10.1002/nme.6041. · Zbl 07845163 · doi:10.1002/nme.6041
[25] ParésN, DíezP, HuertaA. Bounds of functional outputs for parabolic problems. Part I: exact bounds of the discontinuous Galerkin time discretization. Comput Methods Appl Mech Eng. 2007;197(19):1641‐1660. https://doi.org/10.1016/j.cma.2007.08.025. · Zbl 1194.65109 · doi:10.1016/j.cma.2007.08.025
[26] ParésN, DíezP, HuertaA. Bounds of functional outputs for parabolic problems. Part II: bounds of the exact solution. Comput Methods Appl Mech Eng. 2007;197(19):1661‐1679. https://doi.org/10.1016/j.cma.2007.08.024. · Zbl 1194.65110 · doi:10.1016/j.cma.2007.08.024
[27] ParésN, DíezP, HuertaA. Exact bounds for linear outputs of the advection‐diffusion‐reaction equation using flux‐free error estimates. SIAM J Sci Comput. 2009;31(4):3064‐3089. https://doi.org/10.1137/080724356. · Zbl 1195.65157 · doi:10.1137/080724356
[28] JakobssonH, BengzonF, LarsonMG. Adaptive component mode synthesis in linear elasticity. Int J Numer Methods Eng. 2011;86(7):829‐844. https://doi.org/10.1002/nme.3078. · Zbl 1235.74288 · doi:10.1002/nme.3078
[29] OdenJT, PrudhommeS. Goal‐oriented error estimation and adaptivity for the finite element method. Comput Math Appl. 2001;41(5):735‐756. https://doi.org/10.1016/S0898‐1221(00)00317‐5. · Zbl 0987.65110 · doi:10.1016/S0898‐1221(00)00317‐5
[30] BiotMA. General theory of three‐dimensional consolidation. J Appl Phys. 1941;12(2):155‐164. https://doi.org/10.1063/1.1712886. · JFM 67.0837.01 · doi:10.1063/1.1712886
[31] RiceJR, ClearyMP. Some basic stress diffusion solutions for fluid‐saturated elastic porous media with compressible constituents. Rev Geophys. 1976;14(2):227. https://doi.org/10.1029/RG014i002p00227. · doi:10.1029/RG014i002p00227
[32] LarssonF, RunessonK, SuF. Variationally consistent computational homogenization of transient heat flow. Int J Numer Methods Eng. 2010;81(13):1659‐1686. https://doi.org/10.1002/nme.2747. · Zbl 1183.80109 · doi:10.1002/nme.2747
[33] BezansonJ, EdelmanA, KarpinskiS, ShahV. Julia: a fresh approach to numerical computing. SIAM Rev. 2017;59(1):65‐98. https://doi.org/10.1137/141000671. · Zbl 1356.68030 · doi:10.1137/141000671
[34] CarlssonK, EkreF. Tensors.jl – tensor computations in Julia. J Open Res Softw. 2019;7(1):1‐5. https://doi.org/10.5334/jors.182. · doi:10.5334/jors.182
[35] GeuzaineC, RemacleJ‐F. Gmsh: a 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities. Int J Numer Methods Eng. 2009;79(11):1309‐1331. https://doi.org/10.1002/nme.2579. · Zbl 1176.74181 · doi:10.1002/nme.2579
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.