×

Nonparametric doubly robust estimation of causal effect on networks in observational studies. (English) Zbl 07858678

Summary: Interconnection of nodes takes great challenge to the estimation of causal effect in the network. In this study, we develop a nonparametric doubly robust (NDR) estimator to identify the causal effect in the presence of general interference on network observational data. The estimator combines the strengths of doubly robust mapping and nonparametric regression. Thus, it is consistent when either the treatment or the outcome model is properly specified and is free of parametric assumptions. The asymptotic properties of the proposed estimator are also proved. We demonstrate the robustness and effectiveness of NDR by simulation studies and apply this method to investigate the impact of installation of SnCR on ambient ozone concentration of 473 power plants in America.
© 2023 John Wiley & Sons Ltd.

MSC:

62-XX Statistics

Software:

SuperLearner; Stata
Full Text: DOI

References:

[1] Aronow, P. M., & Samii, C. (2017). Estimating average causal effects under general interference, with application to a social network experiment. Annals of Applied Statistics, 11(4), 1912-1947. https://doi.org/10.1214/16-AOAS1005 · Zbl 1383.62329 · doi:10.1214/16-AOAS1005
[2] Barkley, B. G., Hudgens, M. G., Clemens, J. D., Ali, M., & Emch, M. E. (2020). Causal inference from observational studies with clustered interference, with application to a cholera vaccine study. The Annals of Applied Statistics, 14(3), 1432-1448. https://doi.org/10.1214/19-AOAS1314 · Zbl 1470.62152 · doi:10.1214/19-AOAS1314
[3] Benkeser, D., Ju, C., Lendle, S., & vander Laan, M. (2018). Online cross‐validation‐based ensemble learning. Statistics in Medicine, 37, 249-260. https://doi.org/10.1002/sim.7320 · doi:10.1002/sim.7320
[4] Cox, D. R. (1958). Planning of experiments. New York: Wiley. https://doi.org/10.1007/978-3-319-52250-0_2 · Zbl 0084.15802 · doi:10.1007/978-3-319-52250-0_2
[5] Drukker, D. M. (2016). A Generalized Regression‐adjustment Estimator for Average Treatment Effects from Panel Data. The Stata Journal, 16(4), 826-836. https://doi.org/10.1177/1536867X1601600402 · doi:10.1177/1536867X1601600402
[6] Forastiere, L., Airoldi, E. M., & Mealli, F. (2020). Identification and estimation of treatment and interference effects in observational studies on networks. Journal of the American Statistical Association, 116(534), 901-918. https://doi.org/10.1080/01621459.2020.1768100 · Zbl 1464.62207 · doi:10.1080/01621459.2020.1768100
[7] Giffin, A., Reich, B. J., Yang, S., & Rappold, A. G. (2022). Generalized propensity score approach to causal inference with spatial interference. Biometrics. https://doi.org/10.1111/biom.13745 · Zbl 1522.62136 · doi:10.1111/biom.13745
[8] Hong, G., & Raudenbush, S. (2006). Evaluating kindergarten retention policy. Journal of the American Statistical Association, 101, 901-910. https://doi.org/10.1198/016214506000000447 · Zbl 1120.62347 · doi:10.1198/016214506000000447
[9] Kennedy, E. H., Ma, Z. M., McHugh, M. D., & Small, D. S. (2017). Non‐parametric methods for doubly robust estimation of continuous treatment effects. Journal of the Royal Statistical Society Series B‐Statitical Methodology, 79(4), 1229-1245. https://doi.org/10.2307/26773159 · Zbl 1373.62159 · doi:10.2307/26773159
[10] Liu, L., Breil, J., Alcin, H., & Maire, P. H. (2016). On inverse probability‐weighted estimators in the presence of interference. Biometrika, 103(4), 829-842. https://doi.org/10.1093/biomet/asw047 · Zbl 1506.62250 · doi:10.1093/biomet/asw047
[11] Liu, L., Hudgens, M. G., Saul, B., Clemens, J. D., Ali, M., & Emch, M. E. (2019). Doubly robust estimation in observational studies with partial interference. Stat, 8(1), e214. https://doi.org/10.1002/sta4.214 · Zbl 07851101 · doi:10.1002/sta4.214
[12] Miles, C. H., Petersen, M., & vander Laan, M. J. (2019). Causal inference when counterfactuals depend on the proportion of all subjects exposed. Biometrics, 75(3), 768-777. https://doi.org/10.1111/biom.13034 · Zbl 1436.62607 · doi:10.1111/biom.13034
[13] Munoz, I. D., & vander Laan, M. J. (2011). Super learner based conditional density estimation with application to marginal structural models. The international journal of biostatistics, 7, Article 38. https://doi.org/10.2202/1557-4679.1356 · doi:10.2202/1557-4679.1356
[14] Ogburn, E. L., Sofrygin, O., Díaz, I., & Laan, M. J (2022). Causal Inference for Social Network Data. Journal of the American Statistical Association. https://doi.org/10.1080/01621459.2022.2131557 · Zbl 07820406 · doi:10.1080/01621459.2022.2131557
[15] Ouyang, D. S., Li, Q., & Racine, J. S. (2009). Nonparametric estimation of regression functions with discrete regressors. Econometric Theory, 25(1), 1-42. https://doi.org/10.1017/S0266466608090014 · Zbl 1231.62070 · doi:10.1017/S0266466608090014
[16] Papadogeorgou, G., Choirat, C., & Zigler, C. M. (2019). Adjusting for unmeasured spatial confounding with distance adjusted propensity score matching. Biostatistics, 20(2), 256-272. https://doi.org/10.1093/biostatistics/kxx074 · doi:10.1093/biostatistics/kxx074
[17] Papadogeorgou, G., Mealli, F., & Zigler, C. M. (2019). Causal inference with interfering units for cluster and population level treatment allocation programs. Biometrics, 75(3), 778-787. https://doi.org/10.1111/biom.13049 · Zbl 1436.62676 · doi:10.1111/biom.13049
[18] Park, C., & Kang, H. (2022). Efficient semiparametric estimation of network treatment effects under partial interference. Biometrika, 109(4), 1015-1031. https://doi.org/10.1093/biomet/asac009 · Zbl 1515.62050 · doi:10.1093/biomet/asac009
[19] Perez‐Heydrich, C., Hudgens, M. G., Halloran, M. E., Clemens, J. D., Ali, M., & Emch, M. E. (2014). Assessing effects of cholera vaccination in the presence of interference. Biometrics, 70(3), 734-744. https://doi.org/10.1111/biom.12184 · Zbl 1299.92032 · doi:10.1111/biom.12184
[20] Robinson, P. M. (2011). Asymptotic theory for nonparametric regression with spatial data. Journal of Econometrics, 165(1), 5-19. https://doi.org/10.1016/j.jeconom.2011.05.002 · Zbl 1441.62853 · doi:10.1016/j.jeconom.2011.05.002
[21] Rubin, D. B. (1990). Formal modes of statistical inference for causal effects. Journal of Statistical Planning and Inference, 25(3), 279-293. https://doi.org/10.1016/0378-3758(90)90077-8 · doi:10.1016/0378-3758(90)90077-8
[22] Sobel, M. E. (2006). What do randomized studies of housing mobility demonstrate? Causal inference in the face of interference. Journal of the American Statistical Association, 101(476), 1398-1407. https://doi.org/10.1198/016214506000000636 · Zbl 1171.62365 · doi:10.1198/016214506000000636
[23] Sofrygin, O., & vander Laan, M. J. (2017). Semi‐parametric estimation and inference for the mean outcome of the single time‐point intervention in a causally connected population. Journal of Causal Inference, 5(1), 20160003. https://doi.org/10.1515/jci-2016-0003 · doi:10.1515/jci-2016-0003
[24] Tchetgen, E. J., Robins, J. M., & Rotnitzky, A. (2010). On doubly robust estimation in a semiparametric odds ratio model. Biometrika, 97(1), 171-180. https://doi.org/10.1093/biomet/asp062 · Zbl 1183.62065 · doi:10.1093/biomet/asp062
[25] Tchetgen, E. J., & VanderWeele, T. J. (2012). On causal inference in the presence of interference. Statistical Method in Medical Research, 21(1), 55-75. https://doi.org/10.1177/0962280210386779 · doi:10.1177/0962280210386779
[26] vander Laan, M. J., & Barth, T. J. (2014). Causal inference for a population of causally connected units. Journal of Causal Inference, 2(1), 13-74. https://doi.org/10.1515/jci-2013-0002 · doi:10.1515/jci-2013-0002
[27] vander Laan, M. J., Polley, E. C., & Hubbard, A. E. (2007). Super learner. Statistical applications in genetics and molecular. Biology, 6, 25. https://doi.org/10.2202/1544-6115.1309 · Zbl 1166.62387 · doi:10.2202/1544-6115.1309
[28] Wasserman, L. (2006). All of Nonparametric Statistics: Springer. · Zbl 1099.62029
[29] Zigler, C. M., & Papadogeorgou, G. (2021). Bipartite causal inference with interference. Statistical science: A review journal of the Institute of Mathematical Statistics, 36(1), 109-123. https://doi.org/10.1214/19-sts749 · Zbl 07368222 · doi:10.1214/19-sts749
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.