×

The general divisor problem of cusp form coefficients over arithmetic progressions. (English) Zbl 07852312

Let \(H_k^*\) be the set of normalized primitive holomorphic cusp forms of even integral weight \(k\) for the full modular group \(\Gamma = \mathrm{SL}(2, \mathbb{Z})\), and denote by \(\lambda_f(n)\) the \(n\)th normalized Fourier coefficient of \(f\in H_k^*\). Let \(\lambda_{f \times f}(n)\) be the \(n\)th normalized coefficient of the Dirichlet expansion of the Rankin-Selberg \(L\)-function \(L(f\times f,s)\) associated with \(f\). The main purpose of this paper is to establish the asymptotic behavior of the sum \[ \sum_{\substack{n \le x\\ n\equiv l\pmod q}} \lambda^2_{ f \times f}(n)=\frac{x}{\varphi(q)}P(\log x)+O_{f, \epsilon}\left(qx^{1-\frac{3}{2}\eta+\epsilon}\right), \] where \(q\) is a prime with \((l, q) = 1\), \(q\ll x^{\eta}\) and \(P(t)\) is a polynomial in \(t\) of degree \(1\) with leading positive coefficient.
In a similar manner, the authors also consider the general divisor problem of the coefficients of Rankin-Selberg \(L\)-functions associated with \(f\) over the set of arithmetic progressions. Actually, they show that \[ \sum_{\substack{n \le x\\ n\equiv l\pmod q}} \lambda_{\omega, f \times f}(n)=\frac{x}{\varphi(q)}P_{\omega-1}(\log x)+O_{f, \epsilon}\left(qx^{1-\frac{3}{2}\vartheta_\omega+\epsilon}\right), \] for any \(\epsilon>0\), \(\vartheta_\omega=\frac{92}{247\omega+10}\), \(q\ll x^{\vartheta_\omega}\), and \(P_{\omega-1}(t)\) is a polynomial in \(t\) of degree \(\omega-1\) with positive leading coefficient.

MSC:

11F30 Fourier coefficients of automorphic forms
11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations

References:

[1] T. Barnet-Lamb, D. Geraghty, M. Harris, and R. Taylor, A family of Calabi-Yau varieties and potential automorphy. II, Publ. Res. Inst. Math. Sci. 47 (1) (2011), 29-98. · Zbl 1264.11044
[2] M. K. Akbarov, On the quadratic mean over arithmetic progressions of the Fourier coefficients of cusp forms, Math. USSR-Izv. 22 (1983), 191-209. · Zbl 0526.10019
[3] A. N. Andrianov and O.M. Fomenko, On square means of progressions of Fourier coefficients of parabolic forms, Trudy Mat. Inst. Steklov. 80 (1965), 5-15 (in Russian). · Zbl 0146.27504
[4] J. Bourgain, Decoupling, exponential sums and the Riemann zeta function, J. Amer. Math. Soc. 30 (2017), 205-224. · Zbl 1352.11065
[5] L. Clozel and J. A. Thorne, Level-raising and symmetric power functoriality. I, Compos. Math. 150 (2014), 729-748. · Zbl 1304.11040
[6] L. Clozel and J. A. Thorne, Level-raising and symmetric power functoriality. II, Ann. of Math. 181 (2015), 303-359. · Zbl 1339.11060
[7] L. Clozel and J. A. Thorne, Level-raising and symmetric power functoriality. III, Duke Math. J. 166 (2017), 325-402. · Zbl 1372.11054
[8] P. Deligne, La Conjecture de Weil. I, Inst. Hautes Études Sci. Pull. Math. 43 (1974), 273-307. · Zbl 0287.14001
[9] O. M. Fomenko, Fourier coefficients of parabolic forms, and automorphic L-functions, J. Math. Sci. (New York) 95 (1999), 2295-2316.
[10] S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Sup. 11 (1978), 471-542. · Zbl 0406.10022
[11] E. Hecke, Theorie der Eisensteinsche Reihen höherer Stufe und ihre Anwendung auf Funktio-nentheorie und Arithmetik, Monatshefte Math. 5 (1927), 199-224. · JFM 53.0345.02
[12] D. R. Heath-Brown, The twelfth power moment of Riemann-function, Quart. J. Math. 29 (1978), 443-462. · Zbl 0394.10020
[13] D. R. Heath-Brown, Hybrid Bounds for L-functions: A q-Analogue of Van der Corput’s Method and a t-Analogue of Burgess’ Method, in Recent progress in analytic number theory, Symp. Durham, vol. 1, 1981, pp. 121-126. · Zbl 0457.10021
[14] J. L. Hafner and A. Ivić, On sums of Fourier coefficients of cusp forms, L’Enseignement Math. 35 (1989), 375-382. · Zbl 0696.10020
[15] B. R. Huang, Hybrid subconvexity bounds for twisted L-functions on GL(3), Sci. China Math. 64 (3) (2021), 443-478. · Zbl 1469.11125
[16] B. R. Huang, On the Rankin-Selberg problem, Math. Ann. 381 (2021), 1217-1251. · Zbl 1483.11098
[17] B. R. Huang, On the Rankin-Selberg problem. II, Q. J. Math. (2023), to appear.
[18] A. Ivić, On zeta-functions associated with Fourier coefficients of cusp forms, in: Proc. Amal. Conf. Analytic Number Theory (Maiori, 1989), Univ. Saleron, Salerno, 1992, pp. 231-246. · Zbl 0787.11035
[19] Y. Ichihara, The evaluation of the sum over arithmetic progressions for the coeffi cients of the Rankin-Selberg series, Japan. J. Math. (N.S.) 29 (2003), 297-314. · Zbl 1055.11035
[20] Y. Ichihara, The evaluation of the sum over arithmetic progressions for the coefficients of the Rankin-Selberg series. II, in: Analytic Number Theory (Beijing/Kyoto, 1999), Kluwer, Dordrecht, 2002, 173-182. · Zbl 1023.11022
[21] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloquium Publ., Vol. 53, Amer. Math. Soc. Providence, RI, 2004. · Zbl 1059.11001
[22] Y. J. Jiang and G. S. Lü, On the higher mean over arithmetic progressions of Fourier coeffi-cients of cusp form, Acta Arith. 166 (3) (2014), 231-252. · Zbl 1323.11023
[23] Y. J. Jiang and G. S. Lü, Uniform estimates for sums of coefficients of symmetric square L-function, J. Number Theory 148 (2015), 220-234. · Zbl 1380.11037
[24] S. Kanemitsu, A. Sankaranarayanan and Y. Tanigawa, A mean value theorem for Dirichlet series and a general divisor problem, Monatsh. Math. 136 (2002), 17-34. · Zbl 1022.11047
[25] H. Kim and F. Shahidi, Cuspidality of symmetric power with applications, Duke Math. J. 112 (2002), 177-197. · Zbl 1074.11027
[26] H. Kim and F. Shahidi, Functorial products for GL 2 × GL 3 and functorial symmetric cube for GL 2 , with an appendix by C. J. Bushnell and G. Heniart, Ann. of Math. 155 (2002), 837-893. · Zbl 1040.11036
[27] H. Kim, Functoriality for the exterior square of GL 4 and symmetric fourth of GL 2 , Appendix 1 by D. Ramakrishan, Appendix 2 by H. Kim and P. Sarnak, J. Amer. Math. Soc. 16 (2003), 139-183. · Zbl 1018.11024
[28] E. Kowalski, Y. X. Lin, and P. Michel, Rankin-Selberg coefficients in large arithmetic pro-gressions, Sci. China Math. (2023), to appear.
[29] G. S. Lü, Average behavior of Fourier coefficients of cusp forms, Proc. Amer. Soc. 137 (2009), 1961-1969. · Zbl 1241.11054
[30] G. S. Lü, The sixth and eighth moments of Fourier coefiicients of cusp forms, J. Number Theory 129 (2009), 2790-2800. · Zbl 1195.11060
[31] G. S. Lü, On higher moments of Fourier coefficients of holomorphic cusp forms, Canad. J. Math. 63 (2011), 634-647. · Zbl 1250.11046
[32] Y.-K. Lau, G. S. Lü, and J. Wu, Integral power sums of Hecke eigenvalues, Acta Math. 150 (2011), 193-207. · Zbl 1300.11042
[33] Y.-K. Lau and G. S. Lü, Sums of Fourier coefficients of cusp forms, Quart. J. Math. 62 (2011), 687-716. · Zbl 1269.11044
[34] G. S. Lü, On general divisor problems involving Hecke eigenvalues, Acta Math. Hungar. 135 (2012), 148-159. · Zbl 1265.11095
[35] H. F. Liu, Mean value estimates of the coefficients of product L-functions, Acta Math. Hungar. 156 (1) (2018), 102-111. · Zbl 1424.11140
[36] H. F. Liu and R. Zhang, Some problems involving Hecke eiegnvalues, Acta Math. Hungar. 159 (1) (2019), 287-298. · Zbl 1438.11127
[37] S. Luo, H. X. Lao, and A. Y. Zou, Asymptotics for Dirichlet coefficients of symmetric power L-functions, Acta Math. 199 (2021), 253-268. · Zbl 1477.11079
[38] H. F. Liu, Notes on general divisor problems related to Maass cusp forms, Period. Math. Hung. 86 (2) (2023), 552-563. · Zbl 07692669
[39] Y. X. Lin, R. Nunes, and Z. Qi, Strong subconvexity for self-dual GL(3) L-functions, Int. Math. Res. Not. 13 (2023), 11453-11470. · Zbl 1541.11046
[40] J. Moreno and F. Shahidi, The fourth moment of Ramanujan τ -function, Math. Ann. 263 (1983), 233-239. · Zbl 0508.10014
[41] Y. Motohashi, A note on the mean value of the zeta and L-functions. III, Proc. Japan Acad. Ser. A. Math. Sci. 62 (4) (1986), 152-154. · Zbl 0592.10037
[42] J. Newton and J. A. Thorne, Symmetric power functoriality for holomorphic modular forms, Publ. Math. Inst. Hautes Étud. Sci. 134 (2021), 1-116. · Zbl 1503.11085
[43] J. Newton and J. A. Thorne, Symmetric power functoriality for holomorphic modular forms. II, Publ. Math. Inst. Hautes Étud. Sci. 134 (2021), 117-152. · Zbl 1503.11086
[44] A. Perelli, General L-functions, Ann. Mat. Pura Appl 130 (4) (1982), 287-306. · Zbl 0485.10030
[45] R. A. Rankin, Contributions to the theory of Ramanujan’s function τ (n) and similar arith-metical functions II. The order of the Fourier coefficients of the integral modular forms, Proc. Cambridge Philos. Soc. 35 (1939), 357-372. · Zbl 0021.39202
[46] R. A. Rankin, Sums of cusp form coefficients, in: Automorphic Forms and Analytic Number Theory, (Montreal, PQ, 1989), University Montreal: Montreal, QC, Canada, 1990, pp. 115-121. · Zbl 0735.11023
[47] A. Selberg, Bemerkungen über eine Dirichletsche, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. 43 (1940), 47-50. · JFM 66.0377.01
[48] F. Shahidi, Third symmetric power L-functions for GL(2), Compos. Math. 70 (1989), 245-273. · Zbl 0684.10026
[49] J. Wu, Power sums of Hecke eigenvalues and applications, Acta Arith. 137 (2009), 333-344. · Zbl 1232.11054
[50] D. Wang, On the general divisor problems involving Hecke eigenvalues, Acta Math. Hungar. 153 (2017), 509-523. · Zbl 1413.11112
[51] W. Zhang, Some results on divisor problems related to cusp forms, Ramanujan J. 53 (1) (2020), 75-83. · Zbl 1469.11084
[52] A. Y. Zou, H. X. Lao, and L. L. Wei, Distributions of Fourier coefficients of cusp forms over arithmetic progressions, Integers 22 (2022), #A10, 16pp. · Zbl 1493.11087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.