×

Stability of isometries between the positive cones of ordered Banach spaces. (English) Zbl 07845309

Suppose \(E\) and \(F\) are ordered Banach spaces with positive cones \(E_{+}\) and \(F_{+}\). Let \(T:E_{+} \rightarrow F_{+}\) be an \(\varepsilon\)-isometry, i.e., \[ |\|T(x)-T(y)\|-\|x-y\||\leq\varepsilon \ \ \ \forall x,y\in E_{+}. \] Assume further that \(T\) is \(\delta\)-surjective, i.e., for all \(y\in F_{+}\) there is some \(x\in E_{+}\) such that \(\|T(x)-y\|\leq\delta\), and that \(T(0)=0\).
The authors consider the following Hyers-Ulam stability problem: Is there a linear surjective isometry \(\Phi:E \rightarrow F\) such that \(\Phi(E_{+})=F_{+}\) and \[ \|T(x)-\Phi(x)\|\leq K\varepsilon \ \ \ \forall x\in E_{+} \] with a constant \(K\) depending only on \(E\) and \(F\)?
The answer is shown to be affirmative for a wide class of ordered Banach spaces, including for instance all Banach lattices with strictly convex dual and the self-adjoint parts of \(C^*\)-algebras.
The case of \(\delta\)-surjective \(\varepsilon\)-isometries \(T:\ell^1_{+} \rightarrow \ell^1_{+}\) is also treated by a different method.

MSC:

46B40 Ordered normed spaces
46B04 Isometric theory of Banach spaces
Full Text: DOI

References:

[1] Blackadar, B., Operator Algebras. Theory of \(C^*\)-Algebras and von Neumann Algebras, 2006, Berlin: Springer, Berlin · Zbl 1092.46003
[2] Cheng, L.; Cheng, Q.; Tu, K.; Zhang, J., A universal theorem for stability \(\varepsilon \)-isometries of Banach spaces, J. Funct. Anal., 269, 199-214, 2015 · Zbl 1326.46008 · doi:10.1016/j.jfa.2015.04.015
[3] Cheng, L.; Dai, D.; Dong, Y.; Zhou, Y., Universal stability of Banach spaces for \(\varepsilon \)-isometries, Stud. Math., 221, 141-149, 2014 · Zbl 1310.46012 · doi:10.4064/sm221-2-3
[4] Cheng, L.; Dong, Y., A note on stability of non-surjective \(\varepsilon \)-isometries of Banach spaces, Proc. Am. Math. Soc., 148, 4837-4844, 2020 · Zbl 1472.46004 · doi:10.1090/proc/15110
[5] Cheng, L.; Dong, Y.; Zhang, W., On stability of nonlinear non-surjective \(\varepsilon \)-isometries of Banach spaces, J. Funct. Anal., 264, 713-734, 2013 · Zbl 1266.46008 · doi:10.1016/j.jfa.2012.11.008
[6] Cheng, L.; Zhou, Y., On perturbed metric-preserved mappings and their stability characterizations, J. Funct. Anal., 266, 4995-5015, 2014 · Zbl 1302.46006 · doi:10.1016/j.jfa.2014.02.019
[7] Conway, J., A Course in Operator Theory, Graduate Studies in Mathematics, 2000, Providence: American Mathematical Society, Providence · Zbl 0936.47001
[8] Dilworth, SJ, Approximate isometries on finite-dimensional normed spaces, Bull. Lond. Math. Soc., 31, 471-476, 1999 · Zbl 0933.46009 · doi:10.1112/S0024609398005591
[9] Gevirtz, J., Stability of isometries on Banach spaces, Proc. Am. Math. Soc., 89, 633-636, 1983 · Zbl 0561.46012 · doi:10.1090/S0002-9939-1983-0718987-6
[10] Hyers, DH; Ulam, SM, On approximate isometries, Bull. Am. Math. Soc., 51, 288-292, 1945 · Zbl 0060.26404 · doi:10.1090/S0002-9904-1945-08337-2
[11] Li, B., Introduction to Operator Algebras, 1992, River Edge: World Scientific Publishing Co. Inc, River Edge · Zbl 0839.46050
[12] Mazur, S.; Ulam, S., Sur les transformations isométriques d’espaces vectoriels normés, C.R Acad. Sci. Paris, 194, 946-948, 1932 · JFM 58.0423.01
[13] McCarthy, C., \(c_p\), Israel J. Math., 5, 249-271, 1967 · Zbl 0156.37902 · doi:10.1007/BF02771613
[14] Omladič, M.; Šemrl, P., On non linear perturbations of isometries, Math. Ann., 303, 617-628, 1995 · Zbl 0836.46014 · doi:10.1007/BF01461008
[15] Schaefer, HH, Banach Lattices and Positive Operators, 1974, New York: Springer, New York · Zbl 0296.47023 · doi:10.1007/978-3-642-65970-6
[16] Šemrl, P.; Väisälä, J., Nonsurjective nearisometries of Banach spaces, J. Funct. Anal., 198, 268-278, 2003 · Zbl 1033.46019 · doi:10.1016/S0022-1236(02)00049-6
[17] Sun, L., Hyers-Ulam stability of \(\varepsilon \)-isometries between the positive cones of \(L^p\)-spaces, J. Math. Anal. Appl., 487, 2020 · Zbl 1451.46013 · doi:10.1016/j.jmaa.2020.124014
[18] Sun, L., On non-noliear \(\varepsilon \)-isometries between the positive cones of certain continuous function spaces, Ann. Funct. Anal., 12, 54, 2021 · Zbl 1483.46009 · doi:10.1007/s43034-021-00141-w
[19] Sun, L., Hyers-Ulam stability of \(\varepsilon \)-isometries between the positive cones of \(c_0\), Results Math., 77, 37, 2022 · Zbl 1487.46011 · doi:10.1007/s00025-021-01581-5
[20] Sun, L.; Sun, Y.; Wang, S., On perturbed isometries between the positive cones of certain continuous function spaces, Results Math., 78, 63, 2023 · Zbl 1518.46004 · doi:10.1007/s00025-023-01844-3
[21] Vestfrid, I., Hyers-Ulam stability of isometries and non-expansive maps between spaces of continuous functions, Proc. Am. Math. Soc., 145, 2481-2494, 2017 · Zbl 1369.46012 · doi:10.1090/proc/13383
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.