×

A scalable well-balanced numerical scheme for the simulation of fast landslides with efficient time stepping. (English) Zbl 07834060

Summary: We consider a single-phase depth-averaged model for the numerical simulation of fast-moving landslides with the goal of constructing a well-balanced, yet scalable and efficient, second-order time-stepping algorithm. We apply a Strang splitting approach to distinguish between parabolic and hyperbolic problems. For the parabolic contribution, we adopt a second-order Implicit-Explicit Runge-Kutta-Chebyshev scheme, while we use a two-stage Taylor discretization combined with a path-conservative strategy, to deal with the purely hyperbolic contribution. The proposed strategy allows to decouple hyperbolic from parabolic-reaction stiff contributions resulting in an overall well-balanced scheme subject just to stability restrictions of the hyperbolic term. The spatial discretization we adopt is based on a standard finite element method, associated with a hierarchically refined Cartesian grid. After providing numerical evidence of the well-balancing property, we demonstrate the capability of the proposed approach to select time steps larger than the ones adopted by a classical Taylor-Galerkin scheme. Finally, we provide some meaningful scaling results on ideal and realistic scenarios.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76T25 Granular flows
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Software:

RKC; p4est
Full Text: DOI

References:

[1] Donea, J., A Taylor-Galerkin method for convective transport problems. Int. J. Numer. Methods Eng., 1, 101-119 (1984) · Zbl 0524.65071
[2] Löhner, R.; Morgan, K.; Zienkiewicz, O. C., The solution of non-linear hyperbolic equation systems by the finite element method. Int. J. Numer. Methods Fluids, 11, 1043-1063 (1984) · Zbl 0551.76002
[3] Sai, B. V.K. S.; Zienkiewicz, O. C.; Manzari, M. T.; Lyra, P. R.M.; Morgan, K., General purpose versus special algorithms for high-speed flows with shocks. Int. J. Numer. Methods Fluids, 1-4, 57-80 (1998) · Zbl 0904.76065
[4] Quecedo, M.; Pastor, M., A reappraisal of Taylor-Galerkin algorithm for drying-wetting areas in shallow water computations. Int. J. Numer. Methods Fluids, 6, 515-531 (2002) · Zbl 0996.76055
[5] Quecedo, M.; Pastor, M.; Herreros, M. I.; Fernández Merodo, J. A., Numerical modelling of the propagation of fast landslides using the finite element method. Int. J. Numer. Methods Eng., 6, 755-794 (2004) · Zbl 1047.76051
[6] Gatti, F.; Fois, M.; Perotto, S.; de Falco, C.; Formaggia, L., Parallel simulations for fast-moving landslides: space-time mesh adaptation and sharp tracking of the wetting front. Int. J. Numer. Methods Fluids, 8, 1286-1309 (2023) · Zbl 07847183
[7] Marchuk, G. I., Some application of splitting-up methods to the solution of mathematical physics problems. Apl. Mat., 2, 103-132 (1968) · Zbl 0159.44702
[8] Strang, G., On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 3, 506-517 (1968) · Zbl 0184.38503
[9] Dal Maso, G.; Lefloch, P. G.; Murat, F., Definition and weak stability of nonconservative products. J. Math. Pures Appl., 6, 483-548 (1995) · Zbl 0853.35068
[10] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal., 1, 300-321 (2006) · Zbl 1130.65089
[11] Castro, M. J.; Fernández-Nieto, E. D.; Ferreiro, A. M.; García-Rodríguez, J. A.; Parés, C., High order extensions of Roe schemes for two-dimensional nonconservative hyperbolic systems. J. Sci. Comput., 1, 67-114 (2009) · Zbl 1203.65131
[12] Castro, M.; Gallardo, J. M.; López-García, J. A.; Parés, C., Well-balanced high order extensions of Godunov’s method for semilinear balance laws. SIAM J. Numer. Anal., 2, 1012-1039 (2008) · Zbl 1159.74045
[13] Gallardo, J. M.; Parés, C.; Castro, M., On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys., 1, 574-601 (2007) · Zbl 1126.76036
[14] Muñoz-Ruiz, M. L.; Parés, C., Godunov method for nonconservative hyperbolic systems. ESAIM: Math. Model. Numer. Anal., 1, 169-185 (2007) · Zbl 1124.65077
[15] Castro, M.; Pardo, A.; Parés, C.; Toro, E., On some fast well-balanced first order solvers for nonconservative systems. Math. Comput., 271, 1427-1472 (2010) · Zbl 1369.65107
[16] Dumbser, M.; Castro, M.; Parés, C.; Toro, E. F., Ader schemes on unstructured meshes for nonconservative hyperbolic systems: applications to geophysical flows. Comput. Fluids, 9, 1731-1748 (2009) · Zbl 1177.76222
[17] Dumbser, M.; Balsara, D. S., A new efficient formulation of the hllem Riemann solver for general conservative and non-conservative hyperbolic systems. J. Comput. Phys., 275-319 (2016) · Zbl 1349.76603
[18] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E. F., Force schemes on unstructured meshes II: non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng., 9-12, 625-647 (2010) · Zbl 1227.76043
[19] Castro, M.; Gallardo, J.; Parés, C., High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems. Math. Comput., 255, 1103-1134 (2006) · Zbl 1096.65082
[20] Dumbser, M.; Toro, E. F., A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems. J. Sci. Comput., 1, 70-88 (2011) · Zbl 1220.65110
[21] Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O., Ader discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics. Mon. Not. R. Astron. Soc., 4, 4543-4564 (2018)
[22] Busto, S.; Dumbser, M.; Gavrilyuk, S.; Ivanova, K., On thermodynamically compatible finite volume methods and path-conservative ader discontinuous Galerkin schemes for turbulent shallow water flows. J. Sci. Comput., 1, 28 (2021) · Zbl 1501.65047
[23] Verwer, J. G.; Sommeijer, B. P., An implicit-explicit Runge-Kutta-Chebyshev scheme for diffusion-reaction equations. SIAM J. Sci. Comput., 5, 1824-1835 (2004) · Zbl 1061.65090
[24] Verwer, J. G.; Hundsdorfer, W.; Sommeijer, B. P., Convergence properties of the Runge-Kutta-Chebyshev method. Numer. Math., 1, 157-178 (1990) · Zbl 0697.65072
[25] Sommeijer, B. P.; Shampine, L. F.; Verwer, J. G., RKC: an explicit solver for parabolic PDEs. J. Comput. Appl. Math., 2, 315-326 (1998) · Zbl 0910.65067
[26] Bermejo, R.; Carpio, J., An adaptive finite element semi-Lagrangian implicit-explicit Runge-Kutta-Chebyshev method for convection dominated reaction-diffusion problems. Appl. Numer. Math., 1, 16-39 (2008) · Zbl 1128.65073
[27] Bermejo, R.; del Sastre, P. G., An implicit-explicit Runge-Kutta-Chebyshev finite element method for the nonlinear lithium-ion battery equations. Appl. Math. Comput., 398-420 (2019) · Zbl 1428.78029
[28] Abbott, M. B., Computational Hydraulics: Elements of the Theory of Free Surface Flows (1979), Pitman: Pitman London · Zbl 0406.76002
[29] Franci, A.; Cremonesi, M.; Perego, U.; Crosta, G.; Oñate, E., 3D simulation of Vajont disaster. Part 1: numerical formulation and validation. Eng. Geol. (2020)
[30] Pastor, M.; Blanc, T.; Haddad, B.; Drempetic, V.; Mories, M.; Stickle, P.; Mira, M.; Merodo, J., Depth averaged models for fast landslide propagation: mathematical, rheological and numerical aspects. Arch. Comput. Methods Eng., 67-104 (2015) · Zbl 1348.76177
[31] Papanastasiou, T. C., Flows of materials with yield. J. Rheol., 5, 385-404 (1987) · Zbl 0666.76022
[32] Franci, A.; Cremonesi, M.; Perego, U.; Oñate, E.; Crosta, G., 3D simulation of Vajont disaster. Part 2: multi-failure scenarios. Eng. Geol. (2020)
[33] LeVeque, R. J., Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys., 1, 346-365 (1998) · Zbl 0931.76059
[34] Gourgue, O.; Comblen, R.; Lambrechts, J.; Kärnä, T.; Legat, V.; Deleersnijder, E., A flux-limiting wetting-drying method for finite-element shallow-water models, with application to the Scheldt estuary. Adv. Water Resour., 12, 1726-1739 (2009)
[35] Qiu, J.; Dumbser, M.; Shu, C.-W., The discontinuous Galerkin method with Lax-Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng., 42-44, 4528-4543 (2005) · Zbl 1093.76038
[36] Pastor, M.; Quecedo, M.; Fernández Merodo, J.; Herrores, M.; Gonzalez, E.; Mira, P., Modelling tailings dams and mine waste dumps failures. Geotechnique, 8, 579-591 (2002)
[37] Givoli, D., Non-reflecting boundary conditions. J. Comput. Phys., 1, 1-29 (1991) · Zbl 0731.65109
[38] Zienkiewicz, O. C.; Morgan, K., Finite Elements and Approximation (2006), Courier Corporation · Zbl 1116.65113
[39] Castro, M. J.; LeFloch, P. G.; Muñoz-Ruiz, M. L.; Parés, C., Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys., 17, 8107-8129 (2008) · Zbl 1176.76084
[40] Rhebergen, S.; Bokhove, O.; van der Vegt, J. J., Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations. J. Comput. Phys., 3, 1887-1922 (2008) · Zbl 1153.65097
[41] Abgrall, R.; Karni, S., A comment on the computation of non-conservative products. J. Comput. Phys., 8, 2759-2763 (2010) · Zbl 1188.65134
[42] Peraire, J., A finite element method for convection dominated flows (1986), University College of Swansea: University College of Swansea Swansea, Ph.D. thesis
[43] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., 3, 335-362 (1979) · Zbl 0416.76002
[44] Boris, J. P.; Book, D. L., Flux-corrected transport. III. Minimal-error FCT algorithms. J. Comput. Phys., 4, 397-431 (1976) · Zbl 0325.76037
[45] Kuzmin, D.; Möller, M.; Turek, S., High-resolution FEM-FCT schemes for multidimensional conservation laws. Comput. Methods Appl. Mech. Eng., 45-47, 4915-4946 (2004) · Zbl 1112.76393
[46] Xing, Y.; Zhang, X.; Shu, C.-W., Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour., 12, 1476-1493 (2010)
[47] Verwer, J. G., Explicit Runge-Kutta methods for parabolic partial differential equations. Appl. Numer. Math., 1-3, 359-379 (1996) · Zbl 0868.65064
[48] Wohlmuth, B., Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer., 569-734 (2011) · Zbl 1432.74176
[49] Berge, R. L.; Berre, I.; Keilegavlen, E.; Nordbotten, J. M.; Wohlmuth, B., Finite volume discretization for poroelastic media with fractures modeled by contact mechanics. Int. J. Numer. Methods Eng., 4, 644-663 (2020) · Zbl 07843216
[50] Formaggia, L.; Gatti, F.; Zonca, S., An XFEM/DG approach for fluid-structure interaction problems with contact. Appl. Math., 2, 183-211 (2021) · Zbl 1538.65355
[51] Africa, P. C., Scalable adaptive simulation of organic thin-film transistors, PhD Thesis
[52] Africa, P. C.; de Falco, C.; Perotto, S., Scalable recovery-based adaptation on Cartesian quadtree meshes for advection-diffusion-reaction problems. Adv. Comput. Sci. Eng., 4, 443-473 (2023)
[53] Burstedde, C.; Wilcox, L. C.; Ghattas, O., p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput., 3, 1103-1133 (2011) · Zbl 1230.65106
[54] Xing, Y.; Shu, C.-W., A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Comput. Phys., 1, 100-134 (2006) · Zbl 1115.65096
[55] Margottini, C.; Canuti, P.; Sassa, K., Landslide Science and Practice: Volume 3: Spatial Analysis and Modelling (2013), Springer Science & Business Media
[56] Secondi, M. M.; Crosta, G.; di Prisco, C.; Frigerio, G.; Frattini, P.; Agliardi, F., Landslide motion forecasting by a dynamic visco-plastic model, 151-159
[57] Sudret, B., Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf., 7, 964-979 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.