×

Optical solitons in fiber Bragg gratings having Kerr law of refractive index with extended Kudryashov’s method and new extended auxiliary equation approach. (English) Zbl 07832367

Summary: This paper reveals optical solitons and other solutions to fiber Bragg gratings with dispersive reflectivity having Kerr law of nonlinear refractive index. Bragg gratings are indeed a technological marvel that supplements chromatic dispersion when its count runs low. The extended Kudryashov’s method and new extended auxiliary equation method have been implemented. Chirped and chirp-free bright, dark and singular solitons, with dispersive reflectivity, are presented.

MSC:

35Qxx Partial differential equations of mathematical physics and other areas of application
78Axx General topics in optics and electromagnetic theory
35Cxx Representations of solutions to partial differential equations
Full Text: DOI

References:

[1] Ahmed, T.; Atai, J., Bragg solitons in systems with separated nonuniform Bragg grating and nonlinearity, Phys. Rev. E, 96, 3, 32222, (2017)
[2] Ahmed, T.; Atai, J., Soliton-soliton dynamics in a dual-core system with separated nonlinearity and nonuniform Bragg grating, Nonlinear Dyn., 97, 2, 1515-1523, (2019) · Zbl 1430.74071
[3] Atai, J.; Malomed, B., Families of Bragg grating solitons in a cubic-quintic medium, Phys. Lett. A, 284, 6, 247-252, (2001) · Zbl 0977.78016
[4] Atai, J.; Malomed, B., Spatial solitons in a medium composed of self-focusing and self-defocussing layers, Phys. Lett. A, 298, 2-3, 14-148, (2002)
[5] Atai, J.; Malomed, B., Gap solitons in Bragg gratings with dispersive reflectivity, Phys. Lett. A, 342, 5-6, 404-412, (2005) · Zbl 1222.78035
[6] Biswas, A.; Vega-Guzman, J.; Mahmood, M. F.; Khan, S.; Zhou, Q.; Moshokoa, S. P.; Belic, M., Solitons in optical fiber Bragg gratings with dispersive reflectivity, Optik, 182, 119-123, (2019)
[7] Biswas, A.; Ekici, M.; Sonmezoglu, A.; Belic, M. R., Solitons in optical fiber Bragg gratings with dispersive reflectivity by extended trial function method, Optik, 182, 88-94, (2019)
[8] Chowdhury, S. A.M. S.; Atai, J., Stability of Bragg grating solitons in a semilinear dual core system with dispersive reflectivity, IEEE J. Quantum Electron., 50, 6, 458-465, (2014)
[9] Chowdhury, S. A.M. S.; Atai, J., Interaction dynamics of Bragg grating solitons in a semilinear dual-core system with dispersive reflectivity, J. Mod. Opt., 63, 21, 2238-2245, (2016)
[10] Chowdhury, S. A.M. S.; Atai, J., Moving Bragg grating solitons in a semilinear dual-core system with dispersive reflectivity, Sci. Rep., 7, 4021, (2017)
[11] Dasanayaka, S.; Atai, J., Stability of Bragg grating solitons in a cubic-quintic nonlinear medium with dispersive reflectivity, Phys. Lett. A, 375, 2, 225-229, (2010) · Zbl 1241.78036
[12] Neill, D. R.; Atai, J.; Malomed, B. A., Dynamics and collisions of moving solitons in Bragg gratings with dispersive reflectivity, J. Opt. A, 10, 85105, (2008)
[13] Islam, M. J.; Atai, J., Soliton-soliton interactions in a grating-assisted coupler with cubic-quintic nonlinearity, J. Mod. Opt., 65, 18, 2153-2159, (2018)
[14] Islam, M. J.; Atai, J., Dynamics of colliding counter propagating solitons in coupled Bragg gratings with cubic-quintic nonlinearity, J. Mod. Opt., 66, 14, 1498-1505, (2019)
[15] Islam, M. S.; Sultana, J.; Dorraki, M.; Atai, J.; Islam, M. R.; Dinovitser, A.; Ng, B. W.H.; Abbott, D., Low loss and low dispersion hybrid core photonic crystal fiber for terahertz propagation, Photonics Netw. Commun., 35, 3, 364-373, (2018)
[16] Gao, X. Y., Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/ laboratory dusty plasmas, Appl. Math. Lett., 91, 165-172, (2019) · Zbl 1445.76101
[17] Zhao, X.-.-H.; Tian, B.; Xie, X.-Y.; Wu, X.-Y.; Sun, Y.; Guo, Y. J., Solitons, bäcklund transformation and lax pair for a (2+1)- dimensional Davey-Stewartson system on surface waves of finite depth, Waves Random Complex Media, 28, 2, 356-366, (2018) · Zbl 07583360
[18] Yuan, Y.-Q.; Tian, B.; Liu, L.; Wu, X.-Y.; Sun, Y., Solitons for the (2 + 1)-dimensional Konopelchenko-Dubrovsky equations, J. Math. Anal. Appl., 460, 1, 476-486, (2018) · Zbl 1384.35110
[19] Du, Z.; Tian, B.; Chai, H.-P.; Sun, Y.; Zhao, X. H., Rogue waves for the coupled variable-coefficient fourth-order nonlinear Schrödinger equations in an inhomogeneous optical fiber, Chaos Solitons Fractals, 109, 90-98, (2018) · Zbl 1390.35323
[20] Zhang, C.-R.; Tian, B.; Wu, X.-Y.; Yuan, Y.-Q.; Du, X. X., Rogue waves and solitons of the coherently-coupled nonlinear Schrödinger equations with the positive coherent coupling, Phys. Scr., 93, 9, 95202, (2018)
[21] Article 378
[22] Article 40
[23] Chen, S.-S.; Tian, B.; Liu, L.; Yuan, Y.-Q.; Zhang, C. R., Conservation laws, binary Darboux transformations and solitons for a higher-order nonlinear Schrödinger system, Chaos Solitons Fractals, 118, 337-346, (2019) · Zbl 1442.37084
[24] Gao, X. Y., Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation, Appl. Math. Lett., 73, 143-149, (2017) · Zbl 1376.78007
[25] Chen, S.-.-S.; Tian, B.; Liu, L.; Yuan, Y.-.-Q.; Du., X. X., Breathers, multi-peak solitons, breather-to-soliton transitions and modulation instability of the variable-coefficient fourth-order nonlinear Schrödinger system for an inhomogeneous optical fiber, Chin. J. Phys., 60, 440, (2019)
[26] Yin, H.-M.; Tian, B.; Zhao, X. C., Chaotic breathers and breather fission/fusion for a vector nonlinear Schrödinger equation in a birefringent optical fiber or wavelength division multiplexed system, Appl. Math. Comput., 368, 124768, (2020) · Zbl 1433.78020
[27] Du, Z.; Tian, B.; Chai, H.-P.; Zhao, X. H., Dark-bright semi-rational solitons and breathers for a higher-order coupled nonlinear Schrödinger system in an optical fiber, Appl. Math. Lett., 102, 106110, (2020) · Zbl 1439.78012
[28] Du, X.-X.; Tian, B.; Yuan, Y.-Q.; Du, Z., Symmetry reductions, group-invariant solutions, and conservation laws of a (2+1)-dimensional nonlinear Schrödinger equation in a heisenberg ferromagnetic spin chain, Ann. Phys., 531, 11, 1900198, (2019) · Zbl 07761386
[29] Article number: 18 · Zbl 1508.35164
[30] 1 · Zbl 1442.35379
[31] Chen, S.-S.; Tian, B.; Sun, Y.; Zhang, C. R., Generalized darboux transformations, rogue waves, and modulation instability for the coherently coupled nonlinear Schrödinger equations in nonlinear optics, Ann. Phys., 531, 8, 1900011, (2019) · Zbl 07761446
[32] Article number: 578
[33] Gao, X.-Y.; Guo, Y.-J.; Shan, W. R., Water-wave symbolic computation for the earth, enceladus and titan: the higher-order boussinesq-burgers system, auto- and non-auto-backlund transformations, Appl. Math. Lett., 104, 106170, (2020) · Zbl 1437.86001
[34] Arnous, A. H.; Ekici, M.; Biswas, A.; Alshomrani, A. S.; Belic, M. R., Optical solitons having anti-cubic nonlinearity with two integration architectures, Chin. J. Phys., 60, 659-664, (2019) · Zbl 07823623
[35] Biswas, A.; Khalique, C. M., Stationary solutions for the nonlinear dispersive Schrödinger equation with generalized evolution, Chin. J. Phys., 51, 1, 103-110, (2013) · Zbl 07845019
[36] Das, A.; Biswas, A.; Ekici, M.; Zhou, Q.; Belic, M. R., Optical solitons with complex ginzburg-landau equation for two nonlinear forms using f-expansion, Chin. J. Phys., 61, 255-261, (2019) · Zbl 07824988
[37] Krishnan, E. V.; Biswas, A.; Zhou, Q.; Ekici, M.; Alshomrani, A. S.; Belic, M., Optical soliton perturbation with quadratic-cubic nonlinearity by mapping methods, Chin. J. Phys., 60, 632-637, (2019) · Zbl 07823620
[38] Liu, X.; Luan, Z.; Zhou, Q.; Liu, W.; Biswas, A., Dark two-soliton solutions for nonlinear Schrödinger equations in inhomogeneous optical fibers, Chin. J. Phys., 61, 310-315, (2019) · Zbl 07824995
[39] Song, J.-Y.; Yang, Y. K., Soliton solutions and conservation laws for a generalized Ablowitz-Ladik system, Chin. J. Phys., 60, 271-278, (2019) · Zbl 07823590
[40] Wazwaz, A. M., The integrable Vakhnenko-Parkes (VP) and the modified Vakhnenko-Parkes (MVP) equations: multiple real and complex soliton solutions, Chin. J. Phys., 57, 375-381, (2019) · Zbl 1539.37075
[41] Wazwaz, A. M., Multiple complex soliton solutions for the integrable KdV, fifth-order Lax, modified KdV, Burgers, and Sharma-Tasso-Olver equations, Chin. J. Phys., 59, 372-378, (2019) · Zbl 07823539
[42] Xie, X.-Y.; Meng, G. Q., Dark soliton excitations and collisions for the (2+1)-dimensional variable-coefficient Davey-Stewartson-like equations in the plasmas or Bose-Einstein condensates, Chin. J. Phys., 59, 160-165, (2019) · Zbl 07823517
[43] Y. Yıldırım, M. Mirzazadeh, Optical pulses with Kundu-Mukherjee-Naskar model in fiber communication systems, Chin. J. Phys.To appear in https://doi.org/10.1016/j.cjph.2019.10.025. · Zbl 07830261
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.