×

Nodal solutions for Neumann systems with gradient dependence. (English) Zbl 07829907

Summary: We consider the following convective Neumann systems: \[ (\text{S}) \quad \ \begin{cases} -\Delta_{p_1} u_1+ \frac{|\nabla u_1|^{p_1}}{u_1+\delta_1}=f_1(x, u_1, u_2, \nabla u_1, \nabla u_2) & \text{in } \Omega, \\ -\Delta_{p_2} u_2+ \frac{|\nabla u_2|^{p_2}}{u_2+\delta_2}=f_2(x, u_1, u_2, \nabla u_1, \nabla u_2) & \text{in } \Omega, \\ |\nabla u_1|^{p_1-2}\frac{\partial u_1}{\partial \eta}=0=|\nabla u_2|^{p_2-2}\frac{\partial u_2}{\partial \eta} & \text{on } \partial \Omega, \end{cases} \] where \(\Omega\) is a bounded domain in \(\mathbb{R}^N\) \((N\geq 2)\) with a smooth boundary \(\partial \Omega\), \(\delta_1, \delta_2 >0\) are small parameters, \(\eta\) is the outward unit vector normal to \(\partial\Omega\), \(f_1, f_2: \Omega \times \mathbb{R}^2\times \mathbb{R}^{2N} \to \mathbb{R}\) are Carathéodory functions that satisfy certain growth conditions, and \(\Delta_{p_i}\) \((1< p_i< N, i=1,2)\) are the \(p\)-Laplace operators \(\Delta_{p_i}u_i=\operatorname{div}(|\nabla u_i|^{p_i-2} \nabla u_i)\) for \(u_i \in W^{1, p_i}(\Omega)\). To prove the existence of solutions to such systems, we use a subsupersolution method. We also obtain nodal solutions by constructing appropriate subsolution and supersolution pairs. To the best of our knowledge, such systems have not been studied yet.

MSC:

35J57 Boundary value problems for second-order elliptic systems
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Brézis, H., Analyse Fonctionnelle - Théorie et Applications (1983), Paris: Masson, Paris · Zbl 0511.46001
[2] Candito, P.; Livrea, R.; Moussaoui, A., Singular quasilinear elliptic systems involving gradient terms, Nonlinear Anal., Real World Appl., 55, 103-142 (2020) · Zbl 1454.35195 · doi:10.1016/j.nonrwa.2020.103142
[3] Candito, P., Marano, S.A., Moussaoui, A.: Nodal solutions to a Neumann problem for a class of \((p_1,p_2)\)-Laplacian systems. Preprint (2019). doi:10.48550/arXiv.1904.07308
[4] Carl, S.; Le, V. K.; Motreanu, D., Nonsmooth Variational Problems and Their Inequalities (2007), New York: Springer, New York · Zbl 1109.35004 · doi:10.1007/978-0-387-46252-3
[5] Carl, S.; Motreanu, D., Extremal solutions for nonvariational quasilinear elliptic systems via expanding trapping regions, Monatshefte Math., 182, 801-821 (2017) · Zbl 1368.35147 · doi:10.1007/s00605-015-0874-9
[6] Casas, E.; Fernandez, L. A., A Green’s formula for quasilinear elliptic operators, J. Math. Anal. Appl., 142, 62-73 (1989) · Zbl 0704.35047 · doi:10.1016/0022-247X(89)90164-9
[7] Gambera, L.; Guarnotta, U., Strongly singular convective elliptic equations in \(\mathbb{R}^N\) driven by a non-homogeneous operator, Commun. Pure Appl. Math., 21, 3031-3054 (2022) · Zbl 1501.35238
[8] Gasinski, L.; Papageorgiou, N. S., Nonlinear Analysis (2006), Boca Raton: Chapman & Hall/CRC, Boca Raton · Zbl 1086.47001
[9] Guarnotta, U.; Livrea, R.; Winkert, P., The sub-supersolution method for variable exponent double phase systems with nonlinear boundary conditions, Rend. Lincei Mat. Appl., 34, 617-639 (2023) · Zbl 1534.35150
[10] Infante, G.; Maciejewski, M.; Precup, R., A topological approach to the existence and multiplicity of positive solutions of \((p, q)\)-Laplacian systems, Dyn. Partial Differ. Equ., 12, 193-215 (2015) · Zbl 1328.35043 · doi:10.4310/DPDE.2015.v12.n3.a1
[11] Kita, K.; Otani, K., On a comparison theorem for parabolic equations with nonlinear boundary conditions, Adv. Nonlinear Anal., 11, 1165-1181 (2022) · Zbl 1485.35088 · doi:10.1515/anona-2022-0239
[12] Lieberman, G. M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12, 1203-1219 (1988) · Zbl 0675.35042 · doi:10.1016/0362-546X(88)90053-3
[13] Marcus, M.; Mizel, V. J., Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Ration. Mech. Anal., 45, 294-320 (1972) · Zbl 0236.46033 · doi:10.1007/BF00251378
[14] Miyagaki, O. H.; Rodrigues, R. S., On the existence of weak solutions for \((p, q)\)-Laplacian systems with weights, Electron. J. Differ. Equ., 2008 (2008) · Zbl 1173.35451
[15] Miyajima, S.; Motreanu, D.; Tanaka, M., Multiple existence results of solutions for the Neumann problems via super- and sub-solutions, J. Funct. Anal., 262, 1921-1953 (2012) · Zbl 1276.35086 · doi:10.1016/j.jfa.2011.11.028
[16] Motreanu, D., Nonlinear Differential Problems with Smooth and Nonsmooth Constraints (2018), New York: Academic Press, New York · Zbl 1403.35006
[17] Motreanu, D.; Motreanu, V.; Moussaoui, A., Location of nodal solutions for quasilinear elliptic equations with gradient dependence, Discrete Contin. Dyn. Syst., 11, 2, 293-307 (2018) · Zbl 1374.35172
[18] Motreanu, D.; Motreanu, V.; Papageorgiou, N., Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems (2014), New York: Springer, New York · Zbl 1292.47001 · doi:10.1007/978-1-4614-9323-5
[19] Motreanu, D.; Motreanu, V. V.; Papageorgiou, N. S., A unified approach for multiple constant sign and nodal solutions, Adv. Differ. Equ., 12, 1363-1392 (2007) · Zbl 1167.35372
[20] Moussaoui, A., Saoudi, K.: Existence and location of nodal solutions for quasilinear convection-absorption Neumann problems. Preprint (2023). doi:10.48550/arXiv.2304.00647
[21] Orpel, A., Positive stationary solutions of convection-diffusion equations for superlinear sources, Opusc. Math., 42, 727-749 (2022) · Zbl 1500.35119 · doi:10.7494/OpMath.2022.42.5.727
[22] Ou, Z. Q., \((p, q)\)-Laplacian elliptic systems at resonance, Electron. J. Differ. Equ., 2016 (2016) · Zbl 1383.35083
[23] Papageorgiou, N. S.; Rădulescu, V. D.; Repovš, D. D., Nonlinear Analysis - Theory and Applications (2019), Cham: Springer, Cham · Zbl 1414.46003
[24] Wang, T.; Yang, Y.; Guo, H., Multiple nodal solutions of the Kirchhoff-type problem with a cubic term, Adv. Nonlinear Anal., 11, 1030-1047 (2022) · Zbl 1485.35222 · doi:10.1515/anona-2022-0225
[25] Yang, S.; Yang, D.; Yuan, W., Global gradient estimates for Dirichlet problems of elliptic operators with a BMO antisymmetric part, Adv. Nonlinear Anal., 11, 1496-1530 (2022) · Zbl 1498.35217 · doi:10.1515/anona-2022-0247
[26] Zeidler, E., Nonlinear Functional Analysis and Its Applications (1990), New York: Springer, New York · Zbl 0684.47028 · doi:10.1007/978-1-4612-0981-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.