×

Spacelike hypersurfaces of constant \(r\)th \(F\)-mean curvature with light-like boundary. (Chinese. English summary) Zbl 07828149

Summary: Let \(\overline{W}_{F(t)}\), corresponding to a rotation invariant function \(F(t(\nu))\) with a convexity condition on the upper hyperboloid \(\mathbb{H}_+^n\), be a compact space-like Wulff shape bounded by a light-like \((n-1)\)-round sphere. By applying perturbation metric and some integral formulae, we show that the only spacelike hypersurface with constant \(r\)th \(F\)-mean curvature in \(\mathbb{L}^{n+1}\), which is tangent to \(\overline{W}_{F(t)}\) on the boundary, is the Wulff shape.

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53A30 Conformal differential geometry (MSC2010)
Full Text: DOI

References:

[1] Alías L. J., Brasil A. Jr., Colares A. G., Integral formulae for spacelike hypersurfaces in conformally stationary spacelikes and applications, Proc. Edinbergh Math. Soc., 2003, 46: 465-488. · Zbl 1053.53038
[2] Alías L. J., Malacarne M., Spacelike hypersurfaces with constant higher order mean curvature in Minkowski spacetime, J. Geometry Physics, 2002, 41(4): 359-375. · Zbl 1013.53035
[3] Alías L. J., Pastor J. A., Constant mean curvature spacelike hypersurfaces with spherical boundary in the Lorentz-Minkowski space, J. Geometry Physics, 1998, 28: 85-93. · Zbl 0945.53036
[4] Aquino C. P., de Lima H. F., Uniqueness of complete hypersurfaces with bounded higher order mean curva-tures in semi-Riemannian warped products, Glasgow Math. J., 2012, 54: 201-212. · Zbl 1242.53065
[5] Besse A. L., Einstein Manifolds, Springer, Berlin, 1987. · Zbl 0613.53001
[6] Brito F., Sa Earp R., Meek W. III, et al., Structure theorems for constant mean curvature surfaces bounded by a planar curve, Indiana Univ. J., 1991, 40: 333-343. · Zbl 0759.53003
[7] Choe J., Sufficient conditions for constant mean curvature surfaces to be round, Math. Ann., 2002, 323: 143-156. · Zbl 1016.53007
[8] Clarenz U., The Wulff-shape minimizes an anisotropic Willmore functional, Interfaces and Free Boundaries, 2004, 6: 351-359. · Zbl 1072.35184
[9] Garding L., An inequality for hyperbolic polynomials, J. Math. Mech., 1978, 8: 957-965. · Zbl 0090.01603
[10] He Y. J., Li H. Z., Integral formula of Minkowski type and new characterization of the Wulff shape, Acta Mathematica Sinica, Engl. Ser., 2008, 24(4): 697-704. · Zbl 1152.53047
[11] Koiso M., Symmetry of hypersurfaces of constant mean curvature with symmetric boundary, Math. Z., 1986, 191: 567-574. · Zbl 0563.53007
[12] Koiso M., Palmer B., Geometry and stability of surfaces with constant anisotropic mean curvature, Indiana Univ. Math. J., 2005, 54: 1817-1852. · Zbl 1120.58010
[13] Lopez R., Montiel S., Constant mean curvature discs with boundary area, Proc. Amer. Math. Soc., 1995, 123: 1555-1558. · Zbl 0840.53006
[14] Lopez R., Montiel S., Constant mean curvature surfaces with planar boundary, Duke Math. J., 1996, 85: 583-604. · Zbl 0877.53008
[15] Montiel S., Ros A., Compact hypersurfaces: The Alexandrov theorem for higher order mean curvatures, In: Differential Geometry (B. Lawson and K. Tenenblat eds.), Harlow, Longman, 1991, 279-296. · Zbl 0723.53032
[16] Palmer B., Stability of the Wulff shape, Proc. Amer. Math. Soc., 1998, 126: 3661-3667. · Zbl 0924.53009
[17] Rosenberg H., Hypersurfaces of constant curvature in space forms, Bull. Sci. Math., 1993, 117: 211-239. · Zbl 0787.53046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.