×

A new algorithm for \(p\)-adic continued fractions. (English) Zbl 07810334

By Lagrange’s theorem, the continued fraction expansion of a real positive irrational number is eventually periodic. It is still not known if a \(p\)-adic continued fraction algorithm exists that shares a similar property since a \(p\)-adic analogue of Lagrange’s theorem has not been proved yet. Some modifications and improvements to one of Browkin’s algorithms are investigated in the paper. This adjustment improves significantly the periodicity properties of the second Browkin’s algorithm. Let \(|\cdot|_p\) be the \(p\)-adic absolute value over \(\mathbb{Q}\), where \(p\) is an odd prime. A continued fraction of a value \(\alpha\) notated as \[ \alpha=[b_0,b_1,b_2,\ldots]. \] Given \(\alpha=\sum\limits_{i=-r}^\infty a_i p^i \in \mathbb{Q}_p,\) with \(a_i \in \big\{-\frac{p-1}{2}, \dots, \frac{p-1}{2} \big\}\), defined two floor functions as \[ s(\alpha)=\sum_{i=-r}^0 a_i p^i, \quad t(\alpha)=\sum_{i=-r}^{-1} a_i p^i, \] with \(r \in \mathbb{N}\), where \(s(\alpha)=0\) for \(r<0\) and \(t(\alpha)=0\) for \(r\leq 0\). The second Browkin’s algorithm is rewritten as \[ \begin{cases} b_n =s(\alpha_n) & \text{if \(n\) even} \\ b_n =t(\alpha_n) & \text{if \(n\) odd} \\ \alpha_{n+1}=\frac{1}{\alpha_n-b_n}. \end{cases} \] for all \(n \geq 0\) and given \(\alpha_0 \in \mathbb{Q}_p.\) A new algorithm shows better properties of periodicity.
Theorem 1. If \(\alpha_0 \in \mathbb{Q} \), then algorithm stops in a finite number of steps.
Theorem 2. If \(\alpha \in \mathbb{Q}_p\) has a periodic continued fraction expansion by means of algorithm, then the expansion is purely periodic if and only if \(|\alpha|_p\geq 1, \; |\bar{\alpha}| <1.\)
The authors provide examples of this algorithm.

MSC:

11J70 Continued fractions and generalizations
11Y65 Continued fraction calculations (number-theoretic aspects)
11D88 \(p\)-adic and power series fields

References:

[1] Barbero, Stefano, Periodic representations for quadratic irrationals in the field of \(p\)-adic numbers, Math. Comp., 2267-2280, (2021) · Zbl 1469.11231 · doi:10.1090/mcom/3640
[2] S. Barbero, U. Cerruti, and N. Murru, Periodic representations and approximations of \(p\)-adic numbers via continued fractions, Exp. Math. (2021).
[3] Bedocchi, Edmondo, A note on \(p\)-adic continued fractions, Ann. Mat. Pura Appl. (4), 197-207, (1988) · Zbl 0663.12017 · doi:10.1007/BF01766149
[4] Bedocchi, Edmondo, Remarks on periods of \(p\)-adic continued fractions, Boll. Un. Mat. Ital. A (7), 209-214, (1989) · Zbl 0701.11065
[5] Bedocchi, Edmondo, Sur le d\'{e}veloppement de \(\sqrt m\) en fraction continue \(p\)-adique, Manuscripta Math., 187-195, (1990) · Zbl 0732.11068 · doi:10.1007/BF02568429
[6] Browkin, Jerzy, Continued fractions in local fields. I, Demonstratio Math., 67-82, (1978) · Zbl 0376.10025
[7] Browkin, Jerzy, Continued fractions in local fields. II, Math. Comp., 1281-1292, (2001) · Zbl 0983.11042 · doi:10.1090/S0025-5718-00-01296-5
[8] Bundschuh, P., \(p\)-adische Kettenbr\"{u}che und Irrationalit\"{a}t \(p\)-adischer Zahlen, Elem. Math., 36-40, (1977) · Zbl 0344.10017
[9] L. Capuano, N. Murru, L. Terracini, On periodicity of \(p\)-adic Browkin continued fractions, preprint, (2020).
[10] Capuano, Laura, An effective criterion for periodicity of \(\ell \)-adic continued fractions, Math. Comp., 1851-1882, (2019) · Zbl 1423.11121 · doi:10.1090/mcom/3385
[11] Deanin, Alice A., Periodicity of \(P\)-adic continued fraction expansions, J. Number Theory, 367-387, (1986) · Zbl 0596.10031 · doi:10.1016/0022-314X(86)90082-X
[12] Errthum, Eric, A division algorithm approach to \(p\)-adic Sylvester expansions, J. Number Theory, 1-10, (2016) · Zbl 1396.11012 · doi:10.1016/j.jnt.2015.08.016
[13] Hirsh, Jordan, \(p\)-adic continued fractions, Ramanujan J., 389-403, (2011) · Zbl 1234.11089 · doi:10.1007/s11139-010-9266-x
[14] C. Lager A \(p\)-adic Euclidean algorithm, Rose-Hulman Undergraduate Mathematics Journal 10 (2009), Article 9. · Zbl 1357.11005
[15] Laohakosol, Vichian, A characterization of rational numbers by \(p\)-adic Ruban continued fractions, J. Austral. Math. Soc. Ser. A, 300-305, (1985) · Zbl 0582.10021
[16] Mahler, Kurt, On a geometrical representation of \(p\)-adic numbers, Ann. of Math. (2), 8-56, (1940) · JFM 66.0186.01 · doi:10.2307/1968818
[17] N. Murru, G. Romeo, G. Santilli, On the periodicity of an algorithm for \(p\)-adic continued fractions, Ann. Mat. Pura Appl. (2023), 10.1007/s10231-023-01347-6. · Zbl 07746730
[18] N. Murru, G. Romeo, G. Santilli, Convergence conditions for \(p\)-adic continued fractions, preprint, 2202.09249, 2022.
[19] Olds, C. D., Continued Fractions, viii+162 pp., (1963), Random House, New York · Zbl 0123.25804
[20] Ooto, Tomohiro, Transcendental \(p\)-adic continued fractions, Math. Z., 1053-1064, (2017) · Zbl 1388.11040 · doi:10.1007/s00209-017-1859-2
[21] Ruban, A. A., Certain metric properties of the \(p\)-adic numbers, Sibirsk. Mat. \v{Z}., 222-227, (1970) · Zbl 0188.10704
[22] Schneider, Th., Symposia Mathematica, Vol. IV. \"{U}ber \(p\)-adische Kettenbr\"{u}che, 181-189, , (, 1, 9, 6, 8, /, 6, 9, ), Academic Press, London
[23] Tilborghs, Francis, Periodic \(p\)-adic continued fractions, Simon Stevin, 383-390, (1990) · Zbl 0723.11031
[24] L. Wang, \(p\)-adic continued fractions, I, Scientia Sinica, Ser. A 28 (1985), 1009-1017. · Zbl 0628.10036
[25] L. Wang, \(p\)-adic continued fractions, II, Scientia Sinica, Ser. A 28 (1985), 1018-1023. · Zbl 0628.10036
[26] de Weger, B. M. M., Approximation lattices of \(p\)-adic numbers, J. Number Theory, 70-88, (1986) · Zbl 0595.10027 · doi:10.1016/0022-314X(86)90059-4
[27] de Weger, B. M. M., Periodicity of \(p\)-adic continued fractions, Elem. Math., 112-116, (1988) · Zbl 0701.11066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.