×

Discussion on the initial states of controlled bidirectional quantum secure direct communication. (English) Zbl 07789876

Summary: In many communication scenarios, it is necessary to involve a third party for control and supervision. In the context of controlled bidirectional quantum secure direct communication (CBQSDC) protocols, the transmission of secret messages between two legitimate users is only permitted with the explicit permission of a controller. To address the issue of controlled communication, a CBQSDC protocol (CLYH2015) utilizing Bell states was proposed in the paper [C.-H. Chang et al., Quantum Inf. Process. 14, No. 9, 3515–3522 (2015; Zbl 1325.81062)]. Bell states have been widely recognized for their significance in the field of quantum secure direct communication. In a subsequent study published in [A. K. Mohapatra and S. Balakrishnan, Quantum Inf. Process. 16, No. 6, Paper No. 147, 11 p. (2017; Zbl 1373.81180)], the research examined whether CLYH2015 protocol strictly requires the initial states to be Bell states. The conclusion drawn from this investigation is that CLYH2015 protocol working properly necessitates the use of Bell states as initial states. To explore alternative possibilities for the initial states in CLYH2015 protocol, a class of CBQSDC protocols employing the generalized Bell states (GBell states), \(a|00\rangle + b|11\rangle\), \(\bar{b}|00\rangle - \bar{a}|11\rangle\), \(a|01\rangle + b|10\rangle\), and \(\bar{b}|01\rangle - \bar{a}|10\rangle\), are designed where \(a\) and \(b\) are complex numbers with \(|a| = |b| = \frac{1}{\sqrt{2}}\), \(\bar{a}\) and \(\bar{b}\) the conjugate complex numbers of \(a\) and \(b\), respectively. The class of designed CBQSDC protocols demonstrates several favorable properties, including resistance against information leakage, intercept-and-resend attacks, measure-resend attacks, as well as robustness against collective attacks. In addition, the unconditional security of the class of designed protocols is proved. Finally, to show the advantages of the class of designed protocols, they are compared with some with some previous closely associated protocols. Interestingly, it is worth noting that the Bell states can be considered a special case of the GBell states when both \(a\) and \(b\) are real numbers. Consequently, CLYH2015 protocol can be regarded as a particular instance of the designed CBQSDC protocols. This insight implies that the initial states in CLYH2015 protocol can be extended to include the GBell states, rather than being limited solely to the Bell states.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P94 Quantum cryptography (quantum-theoretic aspects)
94A60 Cryptography
Full Text: DOI

References:

[1] Bennett,C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175-179. IEEE, Bangalore India (1984)
[2] Lo, H-K; Chau, HF, Unconditional security of quantum key distribution over arbitrarily long distances, Science, 283, 5410, 2050-2056 (1999) · doi:10.1126/science.283.5410.2050
[3] Gao, Z.; Li, T.; Li, Z., Deterministic measurement-device-independent quantum secret sharing, Sci. China Phys. Mech. Astron., 63, 12, 120311 (2020) · doi:10.1007/s11433-020-1603-7
[4] Dutta, A.; Pathak, A., Controlled secure direct quantum communication inspired scheme for quantum identity authentication, Quant. Inf. Process., 22, 1, 13 (2022) · Zbl 1508.81666 · doi:10.1007/s11128-022-03767-4
[5] Long, G-L; Liu, X-S, Theoretically efficient high-capacity quantum-key-distribution scheme, Phys. Rev. A, 65, 3, 032302 (2002) · doi:10.1103/PhysRevA.65.032302
[6] Deng, F-G; Long, GL, Secure direct communication with a quantum one-time pad, Phys. Rev. A, 69, 5, 052319 (2004) · doi:10.1103/PhysRevA.69.052319
[7] Liu, X.; Li, Z.; Luo, D.; Huang, C.; Ma, D.; Geng, M.; Wang, J.; Zhang, Z.; Wei, K., Practical decoy-state quantum secure direct communication, Sci. China Phys. Mech. Astron., 64, 12, 120311 (2021) · doi:10.1007/s11433-021-1775-4
[8] Park, J.; Kim, B.; Heo, J., Statistical fluctuation analysis for decoy-state quantum secure direct communication, Quantum Inf. Process., 22, 2, 112 (2023) · Zbl 1509.81405 · doi:10.1007/s11128-023-03845-1
[9] Deng, F-G; Long, GL; Liu, X-S, Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block, Phys. Rev. A, 68, 4, 042317 (2003) · doi:10.1103/PhysRevA.68.042317
[10] Li, T.; Long, G-L, Quantum secure direct communication based on single-photon Bell-state measurement, New J. Phys., 22, 6, 063017 (2020) · doi:10.1088/1367-2630/ab8ab5
[11] Sheng, Y-B; Zhou, L.; Long, G-L, One-step quantum secure direct communication, Sci. Bull., 67, 4, 367-374 (2022) · doi:10.1016/j.scib.2021.11.002
[12] Yang, C-W; Lin, J.; Wang, K-L; Tsai, C-W, Cryptanalysis and improvement of a controlled quantum secure direct communication with authentication protocol based on five-particle cluster state, Quant. Inf. Process., 22, 5, 196 (2023) · Zbl 07691202 · doi:10.1007/s11128-023-03956-9
[13] Guerra, A.G.D.A.H., Rios, F.F.S., Ramos, R.V.: Quantum secure direct communication of digital and analog signals using continuum coherent states. Quant. Inf. Process. 15, 4747-4758 (2016) · Zbl 1357.81041
[14] Chai, G.; Cao, Z.; Liu, W.; Zhang, M.; Liang, K.; Peng, J., Novel continuous-variable quantum secure direct communication and its security analysis, Laser Phys. Lett., 16, 9, 095207 (2019) · doi:10.1088/1612-202X/ab3a2b
[15] Srikara, S.; Chandrashekar, C., Quantum direct communication protocols using discrete-time quantum walk, Quantum Inf. Process., 19, 1-15 (2020) · Zbl 1508.81327 · doi:10.1007/s11128-020-02793-4
[16] Cao, Z.; Wang, L.; Liang, K.; Chai, G.; Peng, J., Continuous-variable quantum secure direct communication based on Gaussian mapping, Phys. Rev. Appl., 16, 2, 024012 (2021) · doi:10.1103/PhysRevApplied.16.024012
[17] Zhou, L.; Sheng, Y-B; Long, G-L, Device-independent quantum secure direct communication against collective attacks, Sci. Bull., 65, 1, 12-20 (2020) · doi:10.1016/j.scib.2019.10.025
[18] Zhou, L.; Sheng, Y-B, One-step device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron., 65, 5, 250311 (2022) · doi:10.1007/s11433-021-1863-9
[19] Zhou, L.; Xu, B-W; Zhong, W.; Sheng, Y-B, Device-independent quantum secure direct communication with single-photon sources, Phys. Rev. Appl., 19, 1, 014036 (2023) · doi:10.1103/PhysRevApplied.19.014036
[20] Zhou, Z.; Sheng, Y.; Niu, P.; Yin, L.; Long, G.; Hanzo, L., Measurement-device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron., 63, 3, 1-6 (2020) · doi:10.1007/s11433-019-1450-8
[21] Ying, J-W; Zhou, L.; Zhong, W.; Sheng, Y-B, Measurement-device-independent one-step quantum secure direct communication, Chin. Phys. B, 31, 12, 120303 (2022) · doi:10.1088/1674-1056/ac8f37
[22] Das, N.; Paul, G., Measurement-device-independent quantum secure direct communication with user authentication, Quantum Inf. Process., 21, 7, 260 (2022) · Zbl 1508.81661 · doi:10.1007/s11128-022-03572-z
[23] Hong, Y-P; Zhou, L.; Zhong, W.; Sheng, Y-B, Measurement-device-independent three-party quantum secure direct communication, Quantum Inf. Process., 22, 2, 111 (2023) · Zbl 1509.81376 · doi:10.1007/s11128-023-03853-1
[24] Nguyen, BA, Quantum dialogue, Phys. Lett. A, 328, 1, 6-10 (2004) · Zbl 1134.81338 · doi:10.1016/j.physleta.2004.06.009
[25] Man, Z-X; Zhang, Z-J; Li, Y., Quantum dialogue revisited, Chin. Phys. Lett., 22, 1, 22 (2005) · doi:10.1088/0256-307X/22/1/007
[26] Xia, Y., Fu, C.-B., Zhang, S., Hong, S.-K., Yeon, K.-H., Um, C.-I.: Quantum dialogue by using the GHZ state. arXiv preprint arXiv:quant-ph/0601127 (2006)
[27] Man, Z-X; Xia, Y-J; Zhang, Z-J, Secure deterministic bidirectional communication without entanglement, Int. J. Quantum Inf., 4, 4, 739-746 (2006) · doi:10.1142/S0219749906002146
[28] Yang, Y-G; Wen, Q-Y, Quasi-secure quantum dialogue using single photons, Sci. China Ser. G Phys. Mech. Astron., 50, 5, 558-562 (2007) · doi:10.1007/s11433-007-0057-3
[29] Tan, Y-G; Cai, Q-Y, Classical correlation in quantum dialogue, Int. J. Quant. Inf., 6, 2, 325-329 (2008) · doi:10.1142/S021974990800344X
[30] Gao, F.; Guo, F-Z; Wen, Q-Y; Zhu, F-C, Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication, Sci. China Ser. G Phys. Mech. Astron., 51, 5, 559-566 (2008) · doi:10.1007/s11433-008-0065-y
[31] Dong, L.; Xiu, X-M; Gao, Y-J; Chi, F., Quantum dialogue protocol using a class of three-photon W states, Commun. Theor. Phys., 52, 5, 853 (2009) · Zbl 1180.81054 · doi:10.1088/0253-6102/52/5/19
[32] Luo, Y-P; Lin, C-Y; Hwang, T., Efficient quantum dialogue using single photons, Quant. Inf. Process., 13, 2451-2461 (2014) · Zbl 1305.81067 · doi:10.1007/s11128-014-0803-1
[33] Chang, Y.; Zhang, S-B; Yan, L-L, A bidirectional quantum secure direct communication protocol based on five-particle cluster state, Chin. Phys. Lett., 30, 9, 090301 (2013) · doi:10.1088/0256-307X/30/9/090301
[34] Ye, T-Y, Fault-tolerant authenticated quantum dialogue using logical Bell states, Quant. Inf. Process., 14, 3499-3514 (2015) · Zbl 1325.81075 · doi:10.1007/s11128-015-1040-y
[35] Mohapatra, AK; Balakrishnan, S., Controller-independent bidirectional quantum direct communication, Quant. Inf. Process., 16, 1-11 (2017) · Zbl 1373.81180 · doi:10.1007/s11128-017-1598-7
[36] Chen, Y.; Zou, X.; Wang, X.; Liu, J.; Rong, Z.; Huang, Z.; Zheng, S.; Liang, X.; Wu, J., Two intercept-and-resend attacks on a bidirectional quantum secure direct communication and its improvement, Quant. Inf. Process., 22, 346 (2023) · Zbl 07750046 · doi:10.1007/s11128-023-04088-w
[37] Srikanth, A.; Balakrishnan, S., Controller-independent quantum bidirectional communication using non-maximally entangled states, Quant. Inf. Process., 19, 1-11 (2020) · Zbl 1508.81743 · doi:10.1007/s11128-020-02628-2
[38] Ramachandran, M.; Balakrishnan, S., Effect of noise in the quantum bidirectional direct communication protocol using non-maximally entangled states, Int. J. Theor. Phys., 61, 5, 127 (2022) · Zbl 1496.81039 · doi:10.1007/s10773-022-05115-9
[39] Qi, J-M; Xu, G.; Chen, X-B; Wang, T-Y; Cai, X-Q; Yang, Y-X, Two authenticated quantum dialogue protocols based on three-particle entangled states, Quant. Inf. Process., 17, 1-19 (2018) · Zbl 1398.81074 · doi:10.1007/s11128-018-2005-8
[40] Li, W.; Zha, X-W; Yu, Y., Secure quantum dialogue protocol based on four-qubit cluster state, Int. J. Theor. Phys., 57, 371-380 (2018) · Zbl 1394.81103 · doi:10.1007/s10773-017-3569-2
[41] Liu, Z.; Chen, H., Analyzing and improving the secure quantum dialogue protocol based on four-qubit cluster state, Int. J. Theor. Phys., 59, 2120-2126 (2020) · Zbl 1447.81051 · doi:10.1007/s10773-020-04485-2
[42] Chauhan, S.; Gupta, N., Bidirectional quantum secure direct communication using dense coding of four qubit cluster states, J. Sci. Res., 14, 1, 179-187 (2022) · doi:10.3329/jsr.v14i1.54479
[43] Man, Z-X; Xia, Y-J, Controlled bidirectional quantum direct communication by using a GHZ state, Chin. Phys. Lett., 23, 7, 1680 (2006) · doi:10.1088/0256-307X/23/7/007
[44] Ye, T-Y; Jiang, L-Z, Improvement of controlled bidirectional quantum direct communication using a GHZ state, Chin. Phys. Lett., 30, 4, 040305 (2013) · doi:10.1088/0256-307X/30/4/040305
[45] Liu, Z.-H., Chen, H.-W.: Comment on “Improvement of controlled bidirectional quantum direct communication using a GHZ state”[Chin. Phys. Lett. 30 (2013) 040305]. Chinese Phys. Lett. 30(7), 079901 (2013)
[46] Chang, C-H; Luo, Y-P; Yang, C-W; Hwang, T., Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement, Quant. Inf. Process., 14, 3515-3522 (2015) · Zbl 1325.81062 · doi:10.1007/s11128-015-1050-9
[47] Pan, H-M, Controlled bidirectional quantum secure direct communication with six-qubit entangled states, Int. J. Theor. Phys., 60, 8, 2943-2950 (2021) · Zbl 1528.81115 · doi:10.1007/s10773-021-04866-1
[48] Zou, X., Wang, X., Rong, Z., Huang, Z., Liu, J., Chen, Y.: Comment on “Controlled bidirectional quantum secure direct communication with six-qubit entangled states.” Int. J. Theoret. Phys. 62(2), 43 (2023) · Zbl 1526.81011
[49] Hu, J.-Y., Yu, B., Jing, M.-Y., Xiao, L.-T., Jia, S.-T., Qin, G.-Q., Long, G.-L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)
[50] Zhu, F.; Zhang, W.; Sheng, Y.; Huang, Y., Experimental long-distance quantum secure direct communication, Sci. Bull., 62, 22, 1519-1524 (2017) · doi:10.1016/j.scib.2017.10.023
[51] Zhang, W.; Ding, D-S; Sheng, Y-B; Zhou, L.; Shi, B-S; Guo, G-C, Quantum secure direct communication with quantum memory, Phys. Rev. Lett., 118, 22, 220501 (2017) · doi:10.1103/PhysRevLett.118.220501
[52] Sun, Z.; Song, L.; Huang, Q.; Yin, L.; Long, G.; Lu, J.; Hanzo, L., Toward practical quantum secure direct communication: A quantum-memory-free protocol and code design, IEEE Trans. Commun., 68, 9, 5778-5792 (2020) · doi:10.1109/TCOMM.2020.3006201
[53] Pan, D.; Lin, Z.; Wu, J.; Zhang, H.; Sun, Z.; Ruan, D.; Yin, L.; Long, GL, Experimental free-space quantum secure direct communication and its security analysis, Photon. Res., 8, 9, 1522-1531 (2020) · doi:10.1364/PRJ.388790
[54] Qi, Z.; Li, Y.; Huang, Y.; Feng, J.; Zheng, Y.; Chen, X., A 15-user quantum secure direct communication network, Light Sci. Appl., 10, 1, 183 (2021) · doi:10.1038/s41377-021-00634-2
[55] Zhang, H.; Sun, Z.; Qi, R.; Yin, L.; Long, G-L; Lu, J., Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states, Light Sci. Appl., 11, 1, 83 (2022) · doi:10.1038/s41377-022-00769-w
[56] Liu, X.; Luo, D.; Lin, G.; Chen, Z.; Huang, C.; Li, S.; Zhang, C.; Zhang, Z.; Wei, K., Fiber-based quantum secure direct communication without active polarization compensation, Sci. China Phys. Mech. Astron., 65, 12, 120311 (2022) · doi:10.1007/s11433-022-1976-0
[57] Liu, J., Zou, X., Wang, X., Chen, Y., Rong, Z., Huang, Z., Zheng, S., Liang, X., Wu, J.: A class of general maximum entangled states and its applications in measurement-device-independent quantum secure direct communication. To appear
[58] Yan, P-S; Zhou, L.; Zhong, W.; Sheng, Y-B, Feasible measurement-based entanglement purification in linear optics, Opt. Express, 29, 6, 9363-9384 (2021) · doi:10.1364/OE.420348
[59] Yan, P-S; Zhou, L.; Zhong, W.; Sheng, Y-B, Feasible time-bin entanglement purification based on sum-frequency generation, Opt. Express, 29, 2, 571-583 (2021) · doi:10.1364/OE.409931
[60] Yan, P-S; Zhou, L.; Zhong, W.; Sheng, Y-B, Measurement-based logical qubit entanglement purification, Phys. Rev. A, 105, 6, 062418 (2022) · doi:10.1103/PhysRevA.105.062418
[61] Yan, P-S; Zhou, L.; Zhong, W.; Sheng, Y-B, Advances in quantum entanglement purification, Sci. China Phys. Mech. Astron., 66, 5, 250301 (2023) · doi:10.1007/s11433-022-2065-x
[62] Shannon, CE, Communication theory of secrecy systems, Bell Syst. Tech. J., 28, 4, 656-715 (1949) · Zbl 1200.94005 · doi:10.1002/j.1538-7305.1949.tb00928.x
[63] Wyner, AD, The wire-tap channel, Bell Syst. Tech. J., 54, 8, 1355-1387 (1975) · Zbl 0316.94017 · doi:10.1002/j.1538-7305.1975.tb02040.x
[64] Thangaraj, A.; Dihidar, S.; Calderbank, AR; McLaughlin, SW; Merolla, J-M, Applications of LDPC codes to the wiretap channel, IEEE Trans. Inf. Theory, 53, 8, 2933-2945 (2007) · Zbl 1326.94131 · doi:10.1109/TIT.2007.901143
[65] Tyagi, H.; Vardy, A., Universal hashing for information-theoretic security, Proc. IEEE, 103, 10, 1781-1795 (2015) · doi:10.1109/JPROC.2015.2462774
[66] Renner, R.; Gisin, N.; Kraus, B., Information-theoretic security proof for quantum-key-distribution protocols, Phys. Rev. A, 72, 1, 012332 (2005) · doi:10.1103/PhysRevA.72.012332
[67] Wu, J.; Lin, Z.; Yin, L.; Long, G-L, Security of quantum secure direct communication based on Wyner’s wiretap channel theory, Quant. Eng., 1, 4, 26 (2019)
[68] Cabello, A., Quantum key distribution in the Holevo limit, Phys. Rev. Lett., 85, 26, 5635 (2000) · doi:10.1103/PhysRevLett.85.5635
[69] Pathak, A., Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches, Quant. Inf. Process., 14, 2195-2210 (2015) · Zbl 1317.81083 · doi:10.1007/s11128-015-0957-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.