×

Modern strategies for time series regression. (English) Zbl 07778694

Int. Stat. Rev. 88, Suppl. S1, S179-S204 (2020); erratum ibid. 89, No. 1, 213 (2021).
Summary: This paper discusses several modern approaches to regression analysis involving time series data where some of the predictor variables are also indexed by time. We discuss classical statistical approaches as well as methods that have been proposed recently in the machine learning literature. The approaches are compared and contrasted, and it will be seen that there are advantages and disadvantages to most currently available approaches. There is ample room for methodological developments in this area. The work is motivated by an application involving the prediction of water levels as a function of rainfall and other climate variables in an aquifer in eastern Australia.
{© 2020 International Statistical Institute}

MSC:

62-XX Statistics
68Txx Artificial intelligence
62Mxx Inference from stochastic processes

References:

[1] Allaire, J. J. & Chollet, F.2019. keras: R interface to ’keras’. R package version 2.2.5.0.
[2] Bakker, M. & Schaars, F.2019. Solving groundwater flow problems with time series analysis: you may not even need another model. Groundwater, 57(6), 826-833.
[3] Bogardi, J. J., Dudgeon, D., Lawford, R., Flinkerbusch, E., Meyn, A., Pahl‐Wostl, C., Vielhauer, K. & Vörösmarty, C.2012. Water security for a planet under pressure: interconnected challenges of a changing world call for sustainable solutions. Curr. Opin. Environ. Sustain., 4(1), 35-43.
[4] Bontempi, G., Taieb, B. S. & Le Borgne, Y. A.2013. Machine learning strategies for time series forecasting. In Business Intelligence. eBISS 2012. Lecture Notes in Business Information Processing, pp. e0194889.
[5] Box, G. E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M.2015. Time Series Analysis: Forecasting and Control. Hoboken, New Jersey: John Wiley & Sons.
[6] Cheng, X., Khomtchouk, B., Matloff, N. & Mohanty, P.2018. Polynomial regression as an alternative to neural nets. arXiv preprint arXiv:1806.06850.
[7] Chollet, F. & Allaire, J. J.2018. Deep learning With R. Shelter Island, New York: Manning Publications Company.
[8] Efron, B. & Hastie, T.2016. Computer Age Statistical Inference, Vol. 5. New York, New York: Cambridge University Press. · Zbl 1377.62004
[9] Elman, J. L.1990. Finding structure in time. Cogn. Sci., 14(2), 179-211.
[10] Farzad, A., Mashayekhi, H. & Hassanpour, H.2019. A comparative performance analysis of different activation functions in LSTM networks for classification. Neural Comput. Applic., 31(7), 2507-2521.
[11] Friedman, J. H. & Stuetzle, W.1981. Projection pursuit regression. J. Am. Stat. Assoc., 76(376), 817-823.
[12] Gómez, V. & Maravall, A.1994. Estimation, prediction, and interpolation for nonstationary series with the Kalman filter. J. Am. Stat. Assoc., 89(426), 611-624. · Zbl 0806.62076
[13] Ghatak, A.2019. Deep Learning With R. Singapore: Springer. · Zbl 1411.68002
[14] Goodfellow, I., Bengio, Y. & Courville, A.2016. Deep Learning. Cambridge, Massachusetts: MIT Press. http://www.deeplearningbook.org · Zbl 1373.68009
[15] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R. & Schmidhuber, J.2016. LSTM: a search space Odyssey. IEEE Trans. Neural Netw. Learn. Syst., 28(10), 2222-2232.
[16] Hastie, T., Tibshirani, R. & Friedman, J.2009. The elements of statistical learning: prediction, inference and data mining. Springer. · Zbl 1273.62005
[17] Hochreiter, S. & Schmidhuber, J.1997. Long short‐term memory. Neural Comput., 9(8), 1735-1780.
[18] Hyndman, R. J. & Athanasopoulos, G.2018. Forecasting: principles and practice. OTexts.
[19] Hyndman, R. J. & Fan, S.2010. Density forecasting for long‐term peak electricity demand. IEEE Trans. Power Syst., 25(2), 1142-1153.
[20] Jeong, J. & Park, E.2019. Comparative applications of data‐driven models representing water table fluctuations. J. Hydrol., 572, 261-273.
[21] Jordan, M. I.1997. Serial order: a parallel distributed processing approach. In Neural‐network models of cognition: Biobehavioral foundations. Advances in Psychology. Vol. 121, pp. 471-495. North‐Holland/Elsevier Science Publishers.
[22] Koyck, L. M.1954. Distributed Lags and Investment Analysis, Vol. 4. North‐Holland Publishing Company.
[23] Kratzert, F., Klotz, D., Brenner, C., Schulz, K. & Herrnegger, M.2018. Rainfall-runoff modelling using long short‐term memory (LSTM) networks. Hydrol. Earth Syst. Sci, 22(11), 6005-6022.
[24] Lall, R., Ito, K. & Thurston, G. D.2011. Distributed lag analyses of daily hospital admissions and source‐apportioned fine particle air pollution. Environ. Health Perspect., 119(4), 455-460.
[25] Langevin, C. D., Hughes, J. D., Banta, E. R., Niswonger, R. G., Panday, S. & Provost, A. M.2017. Documentation for the modflow 6 groundwater flow model, US Geological Survey.
[26] Langevin, C. D., Hughes, J. D., Banta, E. R., Provost, A. M., Niswonger, R. G. & Panday, S.2019. Modflow 6 modular hydrologic model version 6.1.0, U.S.
[27] LeCun, Y., Bengio, Y. & Hinton, G.2015. Deep learning. Nature, 521(7553), 436-444.
[28] Lee, T., Shin, J.‐Y., Kim, J.‐S. & Singh, V. P.2020. Stochastic simulation on reproducing long‐term memory of hydroclimatological variables using deep learning model. J. Hydrol., 582, 124540.
[29] Makridakis, S., Spiliotis, E. & Assimakopoulos, V.2018. Statistical and machine learning forecasting methods: concerns and ways forward. PLoS ONE,13(3), e0194889.
[30] Maravall, A., Lopez, R. & Perez, D.2016. Reg‐ARIMA model identification: empirical evidence. Stat. Sin., 26,1365-1388. · Zbl 1356.62152
[31] Montgomery, D. C. & Weatherby, G.1980. Modeling and forecasting time series using transfer function and intervention methods. AIIE Trans., 12(4), 289-307.
[32] O’Hara‐Wild, M., Hyndman, R. & Wang, E.2019. fable: forecasting models for tidy time series. R package version 0.1.0.
[33] Pankratz, A.2012. Forecasting With Dynamic Regression Models, Vol. 935. John Wiley & Sons.
[34] Perrin, C., Michel, C. & Andréassian, V.2003. Improvement of a parsimonious model for streamflow simulation. J. Hydrol., 279(1‐4), 275-289.
[35] R Core Team2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria.
[36] Shen, C.2018. A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resour. Res., 54(11), 8558-8593.
[37] Tardieu, E.2018. Global water security: lessons learnt and long‐term implications in France. In Global Water Security, pp. 185-215. Singapore: Springer.
[38] Tibshirani, R.1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B, 58(1), 267-288. · Zbl 0850.62538
[39] Tsay, R. S.2000. Time series and forecasting: brief history and future research. J. Am. Stat. Assoc., 95(450), 638-643.
[40] Vlachas, P. R., Byeon, W., Wan, Z. Y., Sapsis, T. P. & Koumoutsakos, P.2018. Data‐driven forecasting of high‐dimensional chaotic systems with long short‐term memory networks. Proc. R. Soc. A: Math. Phys. Eng. Sci., 474(2213), 20170844. · Zbl 1402.92030
[41] Wood, S. N.2017. Generalized Additive Models: An Introduction With R, 2nd ed. Boca Raton, Florida: Chapman and Hall/CRC. · Zbl 1368.62004
[42] Zhang, J., Zhu, Y., Zhang, X., Ye, M. & Yang, J.2018. Developing a long short‐term memory (LSTM) based model for predicting water table depth in agricultural areas. J. Hydrol., 561, 918-929.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.