×

A mass transfer cavitation model for the numerical flow simulation of binary alkane mixture segregation. (English) Zbl 07771297

Summary: Based on the Rayleigh bubble dynamics equation a mass transfer model for cavitation of binary alkane mixtures is presented. Raoult’s and Dalton’s law, simple mixing rules, and an accurate Equation of State are utilized. The model is implemented into an in-house CFD code. For solver validation pure species literature cases are taken. The method is applied to a lighter \(n\)-octane/\(n\)-heptane and a heavier \(n\)-dodecane/\(n\)-heptane mixture in a rarefaction tube and a hydrofoil test case. Segregation of the species is observed during cavitation due to their different mass transfer rates. While for the lighter mixture, mass transfer of both species only moderately deviates, a significantly higher mass transfer of \(n\)-heptane compared to \(n\)-dodecane is observed for the heavier mixture, where the saturation pressure differs two orders of magnitude between the mixture ingredients. The strong segregation of the heavier mixture is associated with a predominant amount of \(n\)-heptane in the vapor phase. As a consequence, vapor composition is strongly affected by the volatilities of mixture ingredients.

MSC:

76Txx Multiphase and multicomponent flows
76Mxx Basic methods in fluid mechanics
76Nxx Compressible fluids and gas dynamics

Software:

WAPR; Ceres Solver
Full Text: DOI

References:

[1] Agarwal, S.; Mierle, K., Ceres solver (2022)
[2] Amirante, R.; Distaso, E.; Tamburrano, P., Experimental and numerical analysis of cavitation in hydraulic proportional directional valves, Energy Convers. Manag., 87, 208-219 (2014)
[3] Arndt, R. E.; Song, C.; Kjeldsen, M.; He, J.; Keller, A., Instability of Partial Cavitation: A Numerical/Experimental Approach (2000), National Academies Press
[4] Atkins, P.; Paula, J., Atkins’ Physical Chemistry (2008), Oxford University Press: Oxford University Press Oxford
[5] Bachmann, M.; Müller, S.; Helluy, P.; Mathis, H., A simple model for cavitation with non-condensable gases (2012), pp. 289-296 · Zbl 1284.35332
[6] Barry, D.; Barry, S.; Culligan-Hensley, P., Algorithm 743 - wapr: a Fortran routine for calculating real values of the w function, ACM Trans. Math. Softw., 21, 172-181 (1995) · Zbl 0886.65011
[7] Bermudez-Graterol, J.; Skoda, R., Numerical simulation of bubble dynamics and segregation in binary heptane/dodecane mixtures, J. Fluid Mech., 947, A9 (2022) · Zbl 1505.76092
[8] Bilicki, Z.; Kestin, J.; Stuart, J. T., Physical aspects of the relaxation model in two-phase flow, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 428, 379-397 (1990) · Zbl 0701.76108
[9] Björck, A., Numerical Methods for Least Squares Problems (1996), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia · Zbl 0847.65023
[10] Blume, M.; Schwarz, P.; Rusche, H.; Weiß, L.; Wensing, M.; Skoda, R., 3d simulation of turbulent and cavitating flow for the analysis of primary breakup mechanisms in realistic diesel injection processes, At. Sprays, 29, 861-893 (2019)
[11] Blume, M.; Skoda, R., 3d flow simulation of a circular leading edge hydrofoil and assessment of cavitation erosion by the statistical evaluation of void collapses and cavitation structures, Wear, 428 (2019)
[12] Bode, M.; Satcunanathan, S.; Maeda, K.; Colonius, T.; Pitsch, H., An equation of state tabulation approach for injectors with non-condensable gases: development and analysis, (Proceedings of the 10th International Symposium on Cavitation (2018), ASME: ASME Baltimore (Maryland), USA)
[13] Casoli, P.; Scolari, F.; Rundo, M., Modelling and validation of cavitating orifice flow in hydraulic systems, Sustainability, 13 (2021)
[14] Chapman, W. G.; Gubbins, K. E.; Jackson, G.; Radosz, M., New reference equation of state for associating liquids, Ind. Eng. Chem. Res., 29, 1709-1721 (1990)
[15] Chapman, W. G.; Jackson, G.; Gubbins, K. E., Phase equilibria of associating fluids, Mol. Phys., 65, 1057-1079 (1988)
[16] Chen, Z.; Yao, A.; Yao, C.; Yin, Z.; Xu, H.; Geng, P.; Dou, Z.; Hu, J.; Wu, T.; Ma, M., Effect of fuel temperature on the methanol spray and nozzle internal flow, Appl. Therm. Eng., 114, 673-684 (2017)
[17] Chiapolino, A.; Boivin, P.; Saurel, R., A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows, Comput. Fluids, 150, 31-45 (2017) · Zbl 1390.76862
[18] Chiapolino, A.; Boivin, P.; Saurel, R., A simple phase transition relaxation solver for liquid-vapor flows, Int. J. Numer. Methods Fluids, 83, 583-605 (2017)
[19] Chiapolino, A.; Saurel, R., Extended Noble-Abel stiffened-gas equation of state for sub-and-supercritical liquid-gas systems far from the critical point, Fluids, 3, 48 (2018)
[20] Clerc, S., Numerical simulation of the homogeneous equilibrium model for two-phase flows, J. Comput. Phys., 161, 354-375 (2000) · Zbl 0965.76051
[21] Corless, R. M.; Gonnet, G. H.; Hare, D. E.G.; Jeffrey, D. J.; Knuth, D. E., On the LambertW function, Adv. Comput. Math., 5, 329-359 (1996) · Zbl 0863.65008
[22] Deimel, C.; Günther, M.; Skoda, R., Application of a pressure based CFD code with mass transfer model based on the Rayleigh equation for the numerical simulation of the cavitating flow around a hydrofoil with circular leading edge, Eur. Phys. J. Web Conf., Article 02018 pp. (2014)
[23] Dellacherie, S., Relaxation schemes for the multicomponent Euler system, ESAIM: Math. Model. Numer. Anal., 37, 909-936 (2003) · Zbl 1070.76037
[24] Denbigh, K. G., The Principles of Chemical Equilibrium: With Applications in Chemistry and Chemical Engineering (1981), Cambridge University Press
[25] Dorofeeva, I. E.; Thomas, F. O.; Dunn, P. F., Cavitation of jp-8 fuel in a converging-diverging nozzle: experiments and modelling, (Proceedings of the 7th International Symposium on Cavitation. Proceedings of the 7th International Symposium on Cavitation, Ann Arbor (Michigan), USA (2009))
[26] Downar-Zapolski, P.; Bilicki, Z.; Bolle, L.; Franco, J., The non-equilibrium relaxation model for one-dimensional flashing liquid flow, Int. J. Multiph. Flow, 22, 473-483 (1996) · Zbl 1135.76405
[27] Dunn, P. F.; Thomas, F. O.; Davis, M. P.; Dorofeeva, I. E., Experimental characterization of aviation-fuel cavitation, Phys. Fluids, 22, Article 117102 pp. (2010)
[28] Flåtten, T.; Lund, H., Relaxation two-phase flow models and the subcharacteristic condition, Math. Models Methods Appl. Sci., 21, 2379-2407 (2011) · Zbl 1368.76070
[29] Giannadakis, E.; Gavaises, M.; Arcoumanis, C., Modelling of cavitation in diesel injector nozzles, J. Fluid Mech., 616, 153-193 (2008) · Zbl 1159.76046
[30] Giannadakis, E.; Papoulias, D.; Theodorakakos, A.; Gavaises, M., Simulation of cavitation in outward-opening piezo-type pintle injector nozzles, Proc. Inst. Mech. Eng., Part D, J. Automob. Eng., 222, 1895-1910 (2008)
[31] Goncalvès, E., Numerical study of expansion tube problems: toward the simulation of cavitation, Comput. Fluids, 72, 1-19 (2013) · Zbl 1365.76152
[32] Goncalvès, E., Modeling for non isothermal cavitation using 4-equation models, Int. J. Heat Mass Transf., 76, 247-262 (2014)
[33] Goncalvès, E.; Fortes Patella, R., Numerical simulation of cavitating flows with homogeneous models, Comput. Fluids, 38, 1682-1696 (2009) · Zbl 1177.76429
[34] Goncalvès, E.; Fortes Patella, R., Constraints on equation of state for cavitating flows with thermodynamic effects, Appl. Math. Comput., 217, 5095-5102 (2011) · Zbl 1428.76184
[35] Gross, J.; Sadowski, G., Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules, Ind. Eng. Chem. Res., 40, 1244-1260 (2001)
[36] Guillard, H.; Labois, M., Numerical modelling of compressible two-phase flows, (Proceedings of the European Conference on Computational Fluid Dynamics. Proceedings of the European Conference on Computational Fluid Dynamics, Ghent, Belgium (2006))
[37] Güntner, M., Entwicklung eines CFD-Codes zur numerischen Simulation kavitierender Strömungen in hydraulischen Strömungsmaschinen (2016), Technische Universität München, Ph.D. thesis
[38] Harlow, F. H.; Amsden, A. A.; Laboratory, L. A.S., Fluid dynamics, Los Alamos Scientific Laboratory (1971), of the University of California: of the University of California Los Alamos
[39] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357-393 (1983) · Zbl 0565.65050
[40] Harten, A.; Lax, P. D.; Levermore, C. D.; Morokoff, W. J., Convex entropies and hyperbolicity for general Euler equations, SIAM J. Numer. Anal., 35, 2117-2127 (1998) · Zbl 0922.35089
[41] Hosbach, M.; Skoda, R.; Sander, T.; Leuteritz, U.; Pfitzner, M., On the temperature influence on cavitation erosion in micro-channels, Exp. Therm. Fluid Sci., 117, Article 110140 pp. (2020)
[42] Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S., Two-phase modeling of DDT in granular materials: reduced equations, Phys. Fluids, 13, 3002-3024 (2001) · Zbl 1184.76268
[43] Kawanami, Y.; Kato, H.; Yamaguchi, A., Three-dimensional characteristics of the cavities formed on a two-dimensional foil, (Proceedings of the 3rd International Symposium on Cavitation. Proceedings of the 3rd International Symposium on Cavitation, Grenoble, France (1998))
[44] Kjeldsen, M.; Arndt, R. E.A.; Effertz, M., Spectral characteristics of sheet/cloud cavitation, J. Fluids Eng., 122, 481-487 (2000)
[45] Kolovos, K.; Koukouvinis, P.; McDavid, R. M.; Gavaises, M., Transient cavitation and friction-induced heating effects of diesel fuel during the needle valve early opening stages for discharge pressures up to 450 mpa, Energies, 14 (2021)
[46] Koop, A., Numerical Simulation of Unsteady Three-Dimensional Sheet Cavitation (2008), University of Twente: University of Twente Enschede, Ph.D. thesis
[47] Koukouvinis, P.; Gavaises, M.; Li, J.; Wang, L., Large eddy simulation of diesel injector including cavitation effects and correlation to erosion damage, Fuel, 175, 26-39 (2016)
[48] Koukouvinis, P.; Vidal-Roncero, A.; Rodriguez, C.; Gavaises, M.; Pickett, L., Enhancing the predictive capabilities for high p/t fuel sprays. non-ideal thermodynamic modelling using PC-SAFT, ERCOFTAC Bull., 124 (2020)
[49] Le Martelot, S.; Saurel, R.; Le Métayer, O., Steady one-dimensional nozzle flow solutions of liquid-gas mixtures, J. Fluid Mech., 737, 146-175 (2013) · Zbl 1294.76249
[50] Le Martelot, S.; Saurel, R.; Nkonga, B., Towards the direct numerical simulation of nucleate boiling flows, Int. J. Multiph. Flow, 66, 62-78 (2014)
[51] Le Métayer, O.; Massoni, J.; Saurel, R., Élaboration des lois d’état d’un liquide et de sa vapeur pour les modèles d’écoulements diphasiques, Int. J. Therm. Sci., 43, 265-276 (2004)
[52] Le Métayer, O.; Saurel, R., The Noble-Abel stiffened-gas equation of state, Phys. Fluids, 28, Article 046102 pp. (2016)
[53] Lemmon, E. W.; McLinden, M. O.; Friend, D. G., Thermophysical properties of fluid systems, (Linstrom, P.; Mallard, W., NIST Chemistry WebBook. NIST Chemistry WebBook, NIST Standard Reference Database, vol. 69 (2021), National Institute of Standards and Technology: National Institute of Standards and Technology Gaithersburg, MD)
[54] Levenberg, K., A method for the solution of certain non-linear problems in least squares, Q. Appl. Math., 2, 164-168 (1944) · Zbl 0063.03501
[55] Liu, T. P., Hyperbolic conservation laws with relaxation, Commun. Math. Phys., 108, 153-175 (1987) · Zbl 0633.35049
[56] Lund, H., A hierarchy of relaxation models for two-phase flow, SIAM J. Appl. Math., 72, 1713-1741 (2012) · Zbl 1260.76036
[57] Maia de Oliveira, H.; Bezerra Lopes, F.; Dantas Neto, A.; Chiavone-Filho, O., Vapor-liquid equilibria for pentane + dodecane and heptane + dodecane at low pressures, J. Chem. Eng. Data, 47, 1384-1387 (2002)
[58] Marquardt, D. W., An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math., 11, 431-441 (1963) · Zbl 0112.10505
[59] Matheis, J.; Hickel, S., Multi-component vapor-liquid equilibrium model for LES of high-pressure fuel injection and application to ECN spray a, Int. J. Multiph. Flow, 99, 294-311 (2018)
[60] Matsuura, Y.; Kumagai, K.; Iga, Y., Numerical modeling of gaseous cavitation in CFD of hydraulic oil flow based on dynamic stimulation, (Proceedings of the ASME/BATH 2017 Symposium on Fluid Power and Motion Control. Proceedings of the ASME/BATH 2017 Symposium on Fluid Power and Motion Control, Sarasota (Florida), USA (2017))
[61] Mohan, B.; Yang, W.; Yu, W., Effect of internal nozzle flow and thermo-physical properties on spray characteristics of methyl esters, Appl. Energy, 129, 123-134 (2014)
[62] Mottyll, S.; Skoda, R., Numerical 3D flow simulation of ultrasonic horns with attached cavitation structures and assessment of flow aggressiveness and cavitation erosion sensitive wall zones, Ultrason. Sonochem., 31, 570-589 (2016)
[63] Örley, F.; Hickel, S.; Schmidt, S. J.; Adams, N. A., Large-eddy simulation of turbulent, cavitating fuel flow inside a 9-hole diesel injector including needle movement, Int. J. Eng. Res., 18, 195-211 (2017)
[64] Örley, F.; Trummler, T.; Hickel, S.; Mihatsch, M. S.; Schmidt, S. J.; Adams, N. A., Large-eddy simulation of cavitating nozzle flow and primary jet break-up, Phys. Fluids, 27, Article 086101 pp. (2015)
[65] Pelanti, M.; Shyue, K. M., A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves, J. Comput. Phys., 259, 331-357 (2014) · Zbl 1349.76851
[66] Pelanti, M.; Shyue, K. M., A numerical model for multiphase liquid-vapor-gas flows with interfaces and cavitation, Int. J. Multiph. Flow, 113, 208-230 (2019)
[67] Peng, D. Y.; Robinson, D. B., A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 59-64 (1976)
[68] Petitpas, F.; Massoni, J.; Saurel, R.; Lapebie, E.; Munier, L., Diffuse interface model for high speed cavitating underwater systems, Int. J. Multiph. Flow, 35, 747-759 (2009)
[69] Plesset, M. S.; Prosperetti, A., Bubble dynamics and cavitation, Annu. Rev. Fluid Mech., 9, 145-185 (1977) · Zbl 0418.76074
[70] Qiu, L.; Reitz, R. D., Simulation of supercritical fuel injection with condensation, Int. J. Heat Mass Transf., 79, 1070-1086 (2014)
[71] Qiu, L.; Reitz, R. D., An investigation of thermodynamic states during high-pressure fuel injection using equilibrium thermodynamics, Int. J. Multiph. Flow, 72, 24-38 (2015)
[72] Rapposelli, E.; Cervone, A.; Bramanti, C.; d’Agostino, L., Thermal cavitation experiments on a NACA 0015 hydrofoil, (Proceedings of the ASME/JSME 4th Joint Fluids Engineering Conference. Proceedings of the ASME/JSME 4th Joint Fluids Engineering Conference, Honolulu (Hawaii), USA (2003))
[73] Rodio, M.; Abgrall, R., An innovative phase transition modeling for reproducing cavitation through a five-equation model and theoretical generalization to six and seven-equation models, Int. J. Heat Mass Transf., 89, 1386-1401 (2015)
[74] Rodriguez, C.; Koukouvinis, P.; Gavaises, M., Simulation of supercritical diesel jets using the PC-SAFT EOS, J. Supercrit. Fluids, 145, 48-65 (2019)
[75] Rodriguez, C.; Rokni, H. B.; Koukouvinis, P.; Gupta, A.; Gavaises, M., Complex multicomponent real-fluid thermodynamic model for high-pressure diesel fuel injection, Fuel, 257, Article 115888 pp. (2019)
[76] Rodriguez, C.; Vidal, A.; Koukouvinis, P.; Gavaises, M.; McHugh, M., Simulation of transcritical fluid jets using the PC-SAFT EOS, J. Comput. Phys., 374, 444-468 (2018) · Zbl 1416.76159
[77] Rokni, H. B.; Gupta, A.; Moore, J. D.; McHugh, M. A.; Bamgbade, B. A.; Gavaises, M., Purely predictive method for density, compressibility, and expansivity for hydrocarbon mixtures and diesel and jet fuels up to high temperatures and pressures, Fuel, 236, 1377-1390 (2019)
[78] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425-467 (1999) · Zbl 0937.76053
[79] Saurel, R.; Boivin, P.; Le Métayer, O., A general formulation for cavitating, boiling and evaporating flows, Comput. Fluids, 128, 53-64 (2016) · Zbl 1390.76879
[80] Saurel, R.; Cocchi, J. P.; Butler, P. B., Numerical study of cavitation in the wake of a hypervelocity underwater projectile, J. Propuls. Power, 15, 513-522 (1999)
[81] Saurel, R.; Le Métayer, O.; Massoni, J.; Gavrilyuk, S., Shock jump relations for multiphase mixtures with stiff mechanical relaxation, Shock Waves, 16, 209-232 (2007) · Zbl 1195.76245
[82] Saurel, R.; Petitpas, F.; Abgrall, R., Modelling phase transition in metastable liquids: application to cavitating and flashing flows, J. Fluid Mech., 607, 313-350 (2008) · Zbl 1147.76060
[83] Saurel, R.; Petitpas, F.; Berry, R., Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, J. Comput. Phys., 228, 1678-1712 (2009) · Zbl 1409.76105
[84] Schenke, S.; van Terwisga, T., Simulating compressibility in cavitating flows with an incompressible mass transfer flow solver, (Proceedings of the 5th International Symposium on Marine Propulsors. Proceedings of the 5th International Symposium on Marine Propulsors, Espoo, Finland (2017)), 71-79
[85] Schmidt, D.; Gopalakrishnan, S.; Jasak, H., Multi-dimensional simulation of thermal non-equilibrium channel flow, Int. J. Multiph. Flow, 36, 284-292 (2010)
[86] Schmidt, S.; Sezal, I.; Schnerr, G.; Talhamer, M., Riemann techniques for the simulation of compressible liquid flows with phase-transition at all Mach numbers - shock and wave dynamics in cavitating 3-d micro and macro systems, (Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno (Nevada), USA (2008))
[87] Schmidt, S.; Sezal, I.; Schnerr, G.; Thalhamer, M., Compressible simulation of liquid/vapor two-phase flows with local phase transition, (Proceedings of the 6th International Conference on Multiphase Flow. Proceedings of the 6th International Conference on Multiphase Flow, Leipzig, Germany (2007))
[88] Schmidt, S. J.; Thalhamer, M.; Schnerr, G. H., Inertia controlled instability and small scale structures of sheet and cloud cavitation, (Proceedings of the 7th International Symposium on Cavitation. Proceedings of the 7th International Symposium on Cavitation, Ann Arbor (Michigan), USA (2009))
[89] Schnerr, G.; Sezal, I.; Schmidt, S., Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock dynamics, Phys. Fluids, 20 (2008) · Zbl 1182.76670
[90] Schnerr, G. H.; Sauer, J., Physical and numerical modeling of unsteady cavitation dynamics, (Proceedings of the 4th International Conference on Multiphase Flow. Proceedings of the 4th International Conference on Multiphase Flow, New Orleans (Louisiana), USA (2001)) · Zbl 1002.76009
[91] Schnerr, G. H.; Schmidt, S. J.; Sezal, I. H.; Thalhamer, M., Shock and wave dynamics of compressible liquid flows with special emphasis on unsteady load on hydrofoils and on cavitation in injection nozzles, (Proceedings of the 6th International Symposium on Cavitation. Proceedings of the 6th International Symposium on Cavitation, Wageningen, Netherlands (2006))
[92] Schrank, K.; Murrenhoff, H.; Stammen, C., CFD simulations and experiments of the dispersed two-phase flow through hydraulic orifices, (Proceedings of the ASME 2013 Fluids Engineering Division Summer Meeting. Proceedings of the ASME 2013 Fluids Engineering Division Summer Meeting, Incline Village (Nevada), USA (2013))
[93] Schwarz, P.; Blume, M.; Weiß, L.; Wensing, M.; Skoda, R., 3d simulation of a ballistic direct injection cycle for the assessment of fuel property effects on cavitating injector internal flow dynamics and primary breakup, Fuel, 308, Article 121775 pp. (2022)
[94] Sezal, İsmail Hakkı, Compressible Dynamics of Cavitating 3-D Multi-Phase Flows (2009), Technische Universität München, Ph.D. thesis
[95] Skoda, R.; Iben, U.; Güntner, M.; Schilling, R., Comparison of compressible explicit density-based and implicit pressure-based CFD methods for the simulation of cavitating flows, (Proceedings of the 8th International Symposium on Cavitation. Proceedings of the 8th International Symposium on Cavitation, Singapore (2012))
[96] Skoda, R.; Iben, U.; Morozov, A.; Mihatsch, M.; Schmidt, S.; Adams, N., Numerical simulation of collapse induced shock dynamics for the prediction of the geometry, pressure and temperature impact on the cavitation erosion in micro channels, (Proceedings of the 3rd International Cavitation Forum. Proceedings of the 3rd International Cavitation Forum, Coventry, United Kingdom (2011))
[97] Sod, G. A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1-31 (1978) · Zbl 0387.76063
[98] Theodorakakos, A.; Strotos, G.; Mitroglou, N.; Atkin, C.; Gavaises, M., Friction-induced heating in nozzle hole micro-channels under extreme fuel pressurisation, Fuel, 123, 143-150 (2014)
[99] Trefethen, L. N.; Bau, D., Numerical Linear Algebra (1997), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia · Zbl 0874.65013
[100] Tsukiji, T.; Nakayama, K.; Saito, K.; Yakabe, S., Study on the cavitating flow in an oil hydraulic pump, (Proceedings of the 2011 International Conference on Fluid Power and Mechatronics. Proceedings of the 2011 International Conference on Fluid Power and Mechatronics, Beijing, China (2011)), 253-258
[101] Vidal, A.; Kolovos, K.; Gold, M. R.; Pearson, R. J.; Koukouvinis, P.; Gavaises, M., Preferential cavitation and friction-induced heating of multi-component diesel fuel surrogates up to 450mpa, Int. J. Heat Mass Transf., 166, Article 120744 pp. (2021)
[102] Vidal, A.; Koukouvinis, P.; Gavaises, M., Effect of diesel injection pressures up to 450mpa on in-nozzle flow using realistic multicomponent surrogates, (Proceedings of the 29th European Conference on Liquid Atomization and Spray Systems. Proceedings of the 29th European Conference on Liquid Atomization and Spray Systems, Paris, France (2019))
[103] Vidal, A.; Koukouvinis, P.; Gavaises, M., Vapor-liquid equilibrium calculations at specified composition, density and temperature with the perturbed chain statistical associating fluid theory (PC-SAFT) equation of state, Fluid Phase Equilib., 521, Article 112661 pp. (2020)
[104] Vidal, A.; Rodriguez, C.; Koukouvinis, P.; Gavaises, M.; McHugh, M. A., Modelling of diesel fuel properties through its surrogates using perturbed-chain, statistical associating fluid theory, Int. J. Eng. Res., 21, 1118-1133 (2020)
[105] Wallis, G. B., One-dimensional two-phase flow (1969), McGraw-Hill: McGraw-Hill New York
[106] Wienken, W.; Stiller, J.; Keller, A., A method to predict cavitation inception using large-eddy simulation and its application to the flow past a square cylinder, J. Fluids Eng., 128, 316-325 (2006)
[107] Wisniak, J.; Embon, G.; Shafir, R.; Segura, H.; Reich, R., Isobaric vapor-liquid equilibria in the systems methyl 1, 1-dimethylethyl ether + octane and heptane + octane, J. Chem. Eng. Data, 42, 1191-1194 (1997)
[108] Wood, A. B., A Textbook Of Sound (1930), G. Bell And Sons Ltd.: G. Bell And Sons Ltd. London · JFM 56.0717.07
[109] Yang, S.; Habchi, C., Real-fluid phase transition in cavitation modeling considering dissolved non-condensable gas, Phys. Fluids, 32, Article 032102 pp. (2020)
[110] Yi, P.; Yang, S.; Habchi, C.; Lugo, R., A multicomponent real-fluid fully compressible four-equation model for two-phase flow with phase change, Phys. Fluids, 31, Article 026102 pp. (2019)
[111] Yu, S.; Yin, B.; Jia, H.; Wen, S.; Li, X.; Yu, J., Theoretical and experimental comparison of internal flow and spray characteristics between diesel and biodiesel, Fuel, 208, 20-29 (2017)
[112] Zein, A.; Hantke, M.; Warnecke, G., Modeling phase transition for compressible two-phase flows applied to metastable liquids, J. Comput. Phys., 229, 2964-2998 (2010) · Zbl 1307.76079
[113] Zhang, J., A simple and effective five-equation two-phase numerical model for liquid-vapor phase transition in cavitating flows, Int. J. Multiph. Flow, 132, Article 103417 pp. (2020)
[114] Zwart, P.; Gerber, A.; Belamri, T., A two-phase flow model for predicting cavitation dynamics, (Proceedings of the 5th International Conference on Multiphase Flow. Proceedings of the 5th International Conference on Multiphase Flow, Yokohama, Japan (2004))
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.