×

A stochastic maximum principle for partially observed optimal control problem of McKean-Vlasov FBSDEs with random jumps. (English) Zbl 07769084

Summary: In this paper, we study the stochastic maximum principle for partially observed optimal control problem of forward-backward stochastic differential equations of McKean-Vlasov type driven by a Poisson random measure and an independent Brownian motion. The coefficients of the system and the cost functional depend on the state of the solution process as well as of its probability law and the control variable. Necessary and sufficient conditions of optimality for this systems are established under assumption that the control domain is supposed to be convex. Our main result is based on Girsavov’s theorem and the derivatives with respect to probability law. As an illustration, a partially observed linear-quadratic control problem of McKean-Vlasov forward-backward stochastic differential equations type is studied in terms of the stochastic filtering.

MSC:

93E20 Optimal stochastic control
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Bensoussan, A., Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions, Stoch. Int. J. Probab. Stoch. Process., 9, 3, 169-222 (1983) · Zbl 0516.60072
[2] Buckdahn, R.; Li, J.; Ma, J., A stochastic maximum principle for general mean-field systems, Appl. Math. Optim., 74, 3, 507-534 (2016) · Zbl 1359.93528 · doi:10.1007/s00245-016-9394-9
[3] Carmona, R.; Delarue, F., Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics, Ann. Probab., 43, 5, 2647-2700 (2015) · Zbl 1322.93103 · doi:10.1214/14-AOP946
[4] Cardaliaguet, P.: Notes on Mean Field Games (from P.-L. Lions’ lectures at Collège de France). https://www.ceremade.dauphine.fr/-cardalia/ (2013)
[5] Djehiche, B.; Tembine, H., Risk Sensitive Mean-Field Type Control Under Partial Observation. Stochastics of Environmental and Financial Economics, 243-263 (2016), Cham: Springer, Cham · Zbl 1334.93180
[6] Fleming, WH, Optimal control of partially observable diffusions, SIAM J. Control, 6, 2, 194-214 (1968) · Zbl 0167.09104 · doi:10.1137/0306015
[7] Lakhdari, IE; Miloudi, H.; Hafayed, M., Stochastic maximum principle for partially observed optimal control problems of general McKean-Vlasov differential equations, Bull. Iran. Math. Soc., 47, 4, 1021-1043 (2021) · Zbl 1469.93117 · doi:10.1007/s41980-020-00426-1
[8] Li, R.; Fu, F., The maximum principle for partially observed optimal control problems of mean-field FBSDEs, Int. J. Control, 92, 10, 2463-2472 (2019) · Zbl 1423.93418 · doi:10.1080/00207179.2018.1441555
[9] Ma, H.; Liu, B., Maximum principle for partially observed risk-sensitive optimal control problems of mean-field type, Eur. J. Control, 32, 16-23 (2016) · Zbl 1355.93213 · doi:10.1016/j.ejcon.2016.05.002
[10] Miloudi, H.; Meherrem, S.; Lakhdari, IE; Hafayed, M., Necessary conditions for partially observed optimal control of general McKean-Vlasov stochastic differential equations with jumps, Int. J. Control, 95, 3170-3181 (2021) · Zbl 1505.93288 · doi:10.1080/00207179.2021.1961020
[11] Meherrem, S.; Hafayed, M., Maximum principle for optimal control of McKean-Vlasov FBSDEs with Lévy process via the differentiability with respect to probability law, Optim. Control Appl. Methods, 40, 3, 499-516 (2019) · Zbl 1425.93304 · doi:10.1002/oca.2490
[12] Nie, T.; Yan, K., Extended mean-field control problem with partial observation, ESAIM Control Optim. Calc. Var, 28, 17 (2022) · Zbl 1485.93638 · doi:10.1051/cocv/2022010
[13] Shi, J.; Wu, Z., Maximum principle for partially-observed optimal control of fully-coupled forward-backward stochastic systems, J. Optim. Theory Appl., 145, 3, 543-578 (2010) · Zbl 1209.49034 · doi:10.1007/s10957-010-9696-z
[14] Wu, Z., A maximum principle for partially observed optimal control of forward-backward stochastic control systems, Sci. China Inf. Sci., 53, 11, 2205-2214 (2010) · Zbl 1227.93116 · doi:10.1007/s11432-010-4094-6
[15] Wang, G.; Wu, Z.; Xiong, J., Maximum principles for forward-backward stochastic control systems with correlated state and observation noises, SIAM J. Control Optim., 51, 1, 491-524 (2013) · Zbl 1262.93027 · doi:10.1137/110846920
[16] Wang, M.; Shi, Q.; Meng, Q., Optimal control of forward-backward stochastic jump-diffusion differential systems with observation noises: stochastic maximum principle, Asian J. Control, 23, 1, 241-254 (2021) · Zbl 07878801 · doi:10.1002/asjc.2272
[17] Xiao, H., The maximum principle for partially observed optimal control of forward-backward stochastic systems with random jumps, J. Syst. Sci. Complex., 24, 6, 1083-1099 (2011) · Zbl 1338.93408 · doi:10.1007/s11424-011-9311-x
[18] Zhou, Q.; Ren, Y.; Wu, W., On optimal mean-field control problem of mean-field forward-backward stochastic system with jumps under partial information, J. Syst. Sci. Complex., 30, 4, 828-856 (2017) · Zbl 1381.93106 · doi:10.1007/s11424-016-5237-7
[19] Zhang, S.; Xiong, J.; Liu, X., Stochastic maximum principle for partially observed forward-backward stochastic differential equations with jumps and regime switching, Sci. China Inf. Sci., 61, 7, 1-13 (2018) · doi:10.1007/s11432-017-9267-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.