×

Odd-fold Darboux transformation, breather, rogue-wave and semirational solutions on the periodic background for a variable-coefficient derivative nonlinear Schrödinger equation in an inhomogeneous plasma. (English) Zbl 07768758

Summary: Plasmas are believed to be possibly the most abundant form of visible matter in the Universe. Investigation in this paper is given to a variable-coefficient derivative nonlinear Schrödinger equation describing the nonlinear Alfvén waves in an inhomogeneous plasma. With respect to the left polarized Alfvén wave, the odd-fold Darboux transformation, breather, rogue-wave and semirational solutions are constructed on the periodic background. Conditions for the antidark/gray/black soliton solutions or periodic solutions are obtained. Period of the Akhmediev breather is independent of the dispersion coefficient. When such an equation has a constant dispersion, with the increasing value of the dispersion coefficient, quasi-period of the Kuznetsov-Ma breather decreases, quasi-periods of the spatio-temporal breathers along the \(\xi\) and \(\tau\) axes both decrease and range of the rogue wave along the \(\tau\) axis decreases, where \(\xi\) and \(\tau\) are the stretched time and space variables, respectively. When such an equation has a \(\tau\)-dependent linear dispersion, with the increasing value of \(|\tau|\), quasi-period of the Kuznetsov-Ma breather decreases and quasi-periods of the spatio-temporal breathers along the \(\xi\) and \(\tau\) axes both decrease. When such an equation has a constant loss/gain, linearly periodic background is exhibited. When such an equation has a \(\tau\)-dependent linear loss/gain, parabolic-periodic background is shown.
© 2021 Wiley-VCH GmbH

MSC:

81-XX Quantum theory
Full Text: DOI

References:

[1] R. J.Goldston, Introduction to Plasma Physics, CRC Press, Bristol2020.
[2] X. Y.Gao, Y. J.Guo, W. R.Shan, Wave. Random Complex2021, https://doi.org/10.1080/17455030.2021.1942308. · doi:10.1080/17455030.2021.1942308
[3] Y. J.Feng, Y. T.Gao, L. Q.Li, T. T.Jia, Eur. Phys. J. Plus2020, 135, 272.
[4] G. F.Deng, Y. T.Gao, C. C.Ding, J. J.Su, Chaos Solitons Fract.2020, 140, 110085. · Zbl 1495.35147
[5] C. C.Ding, Y. T.Gao, G. F.Deng, D.Wang, Chaos Solitons Fract.2020, 133, 109580. · Zbl 1483.35207
[6] F. Y.Liu, Y. T.Gao, X.Yu, L. Q.Li, C. C.Ding, D.Wang, Eur. Phys. J. Plus2021, 136, 656.
[7] A. D.Leneman, W.Gekelman, J.Maggs, Phys. Rev. Lett.1999, 82, 2673.
[8] W. R.Sun, Ann. Phys. (Berlin, Ger.)2017, 529, 1600227. · Zbl 1357.35260
[9] Z. Z.Lan, B. L.Guo, Nonlinear Dyn.2020, 100, 3771.
[10] M. S.Ruderman, Phys. Plasmas2002, 9, 2940.
[11] C. F.Kennel, B.Buti, T.Hada, R.Pellat, Phys. Fluids1988, 31, 1949. · Zbl 0643.76123
[12] B.Buti, Geophys. Res. Lett.1991, 18, 809.
[13] B.Buti, J. Plasma Phys.1992, 47, 39.
[14] B.Buti, V. L.Galinski, V. I.Shevchenko, G. S.Lakhina, B. T.Tsurutani, B. E.Goldstein, P.Diamond, M. V.Medvedev, Astrophys. J.1999, 523, 849.
[15] T.Xu, B.Tian, L. L.Li, X.Lü, C.Zhang, Phys. Plasmas2008, 15, 102307.
[16] L.Wang, Y. T.Gao, Z. Y.Sun, F. H.Qi, D. X.Meng, G. D.Lin, Nonlinear Dyn.2012, 67, 713. · Zbl 1356.76457
[17] L.Wang, M.Li, F. H.Qi, T.Xu, Phys. Plasmas2015, 22, 032308.
[18] L.Wang, M.Li, F. H.Qi, C.Geng, Eur. Phys. J. D2015, 69, 108.
[19] K.Mio, T.Ogino, K.Minami, S.Takeda, J. Phys. Soc. Jpn.1976, 41, 265. · Zbl 1334.76181
[20] G. P.Agrawal, Nonlinear Fiber Optics, Academic Press, San Diego, CA2001.
[21] D. J.Kaup, A. C.Newell, J. Math. Phys.1978, 19, 798. · Zbl 0383.35015
[22] H. Q.Zhang, F.Chen, Z. J.Pei, Nonlinear Dyn.2021, 103, 1023. · Zbl 1516.35173
[23] D. J.Kedziora, A.Ankiewicz, N.Akhmediev, Eur. Phys. J. Spec. Top.2014, 223, 43.
[24] W. Q.Peng, S. F.Tian, X. B.Wang, T. T.Zhang, Wave Motion2020, 93, 102454. · Zbl 1524.35596
[25] C. C.Ding, Y. T.Gao, L. Q.Li, Chaos Soliton. Fract.2019, 120, 259. · Zbl 1448.35084
[26] W.Liu, Y. S.Zhang, J. S.He, Rom. Rep. Phys.2018, 70, 106.
[27] T. T.Jia, Y. T.Gao, G. F.Deng, L.Hu, Nonlinear Dyn.2019, 98, 269. · Zbl 1430.74073
[28] a) X. Y.Gao, Y. J.Guo, W. R.Shan, Chaos Solitons Fract.2020, 138, 109950;; b) C. C.Ding, Y. T.Gao, L.Hu, G. F.Deng, C. Y.Zhang, Chaos Solitons Fract.2021, 142, 110363;; c) F. Y.Liu, Y. T.Gao, X.Yu, L.Hu, X. H.Wu, Chaos Solitons Fract.2021, 152, 111355;; d) X. H.Wu, Y. T.Gao, X.Yu, C. C.Ding, F. Y.Liu, T. T.Jia, Mod. Phys. Lett. B2021, unpublished.
[29] a) X. Y.Gao, Y. J.Guo, W. R.Shan, Appl. Math. Lett.2021, 120, 107161;; b) L. Q.Li, Y. T.Gao, X.Yu, T. T.Jia, L.Hu, C. Y.Zhang, Chin. J. Phys.2021 in press, https://doi.org/10.1016/j.cjph.2021.09.004. · Zbl 1541.35432 · doi:10.1016/j.cjph.2021.09.004
[30] J. J.Su, Y. T.Gao, C. C.Ding, Appl. Math. Lett.2019, 88, 201. · Zbl 1448.76087
[31] Y. J.Feng, Y. T.Gao, T. T.Jia, L. Q.Li, Mod. Phys. Lett. B2019, 33, 1950354.
[32] L.Hu, Y. T.Gao, T. T.Jia, G. F.Deng, L. Q.Li, Z. Angew. Math. Phys.2021, 72, 75.
[33] C. C.Ding, Y. T.Gao, G. F.Deng, Nonlinear Dyn.2019, 97, 2023. · Zbl 1430.37071
[34] F. Y.Liu, Y. T.Gao, X.Yu, C. C.Ding, G. F.Deng, T. T.Jia, Chaos Solitons Fract.2021, 144, 110559. · Zbl 1498.35479
[35] X. H.Zhao, Appl. Math. Lett.2021, 121, 107383. · Zbl 1479.35830
[36] L.Liu, B.Tian, W. R.Sun, H. L.Zhen, W. R.Shan, Commun. Nonlinear Sci. Numer. Simul.2016, 39, 545. · Zbl 1510.78015
[37] V. N.Serkin, A.Hasegawa, T. L.Belyaeva, Phys. Rev. A2010, 81, 023610.
[38] C. Q.Su, N.Qin, J. G.Li, Superlattices Microstruct.2016, 100, 381.
[39] J. J.Su, Y. T.Gao, G. F.Deng, T. T.Jia, Phys. Rev. E2019, 100, 042210.
[40] L.Hu, Y. T.Gao, S. L.Jia, J. J.Su, G. F.Deng, Mod. Phys. Lett. B2019, 33, 1950376.
[41] T. T.Jia, Y. T.Gao, X.Yu, L. Q.Li, Appl. Math. Lett.2021, 114, 106702. · Zbl 1458.35371
[42] G. F.Deng, Y. T.Gao, J. J.Su, C. C.Ding, T. T.Jia, Nonlinear Dyn.2020, 99, 1039. · Zbl 1459.35076
[43] L. Q.Li, Y. T.Gao, L.Hu, T. T.Jia, C. C.Ding, Y. J.Feng, Nonlinear Dyn.2020, 100, 2729. · Zbl 1516.37117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.