×

Some theoretical and practical aspects of empirical likelihood methods for complex surveys. (English) Zbl 07767689

Summary: This paper provides an overview on two parallel approaches to design-based inference with complex survey data: the pseudo empirical likelihood methods and the sample empirical likelihood methods. The general framework covers parameters defined through smooth or non-differentiable estimating functions for analytic use of survey data as well as descriptive finite population parameters, and the theory focuses on point estimation, hypothesis tests and variable selection under an arbitrary sampling design. Major practical issues for the implementation of the methods, including computational algorithms, are briefly discussed. Results from simulation studies to compare the finite sample performances of the two approaches are presented.
{© 2018 The Authors. International Statistical Review © 2018 International Statistical Institute}

MSC:

62Gxx Nonparametric inference
62Dxx Statistical sampling theory and related topics
62Jxx Linear inference, regression
Full Text: DOI

References:

[1] Berger, Y.G. & De La Riva Torres, O (2016). Empirical likelihood confidence intervals for complex sampling designs. J. R. Stat. Soc. Ser. B, 78, 319-341. · Zbl 1414.62046
[2] Binder, D.A. (1983). On the variances of asymptotically normal estimators from complex surveys. Int. Stat. Rev., 51, 279-292. · Zbl 0535.62014
[3] Binder, D.A. & Roberts, G. (2009). Design‐and model‐based inference for model parameters. In Handbook of Statistics, Sample Surveys: Inference and Analysis, Eds. Pfeffermann, D. (ed.) & Rao, C.R. (ed.), Vol. 29B, Elsevier: Amsterdam. · Zbl 1366.62001
[4] Chen, S. & Kim, J.K. (2014). Population empirical likelihood for nonparametric inference in survey sampling. Statist. Sinica, 24, 335-355. · Zbl 1416.62076
[5] Chen, J. & Qin, J. (1993). Empirical likelihood estimation for finite population and the effective usage of auxiliary information. Biometrika, 80, 107-116. · Zbl 0769.62006
[6] Chen, J. & Sitter, R.R. (1999). A pseudo empirical likelihood approach to the effective use of auxiliary information in complex surveys. Statist. Sinica, 9, 385-406. · Zbl 0930.62005
[7] Chen, J., Sitter, R.R. & Wu, C. (2002). Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys. Biometrika, 89, 230-237. · Zbl 0997.62008
[8] Fan, J. & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc., 96, 1348-1360. · Zbl 1073.62547
[9] Hartley, H.O. & Rao, J.N.K. (1962). Sampling with unequal probabilities and without replacement. Ann. Math. Stat., 33, 350-374. · Zbl 0121.13704
[10] Hartley, H.O. & Rao, J.N.K. (1968). A new estimation theory for sample surveys. Biometrika, 55, 547-557. · Zbl 0177.46502
[11] Haziza, D., Mecatti, F. & Rao, J.N.K. (2008). Evaluation of some approximate variance estimators under the Rao-Sampford unequal probability sampling design. Metron, 66, 91-108. · Zbl 1151.62015
[12] Kim, J.K. (2009). Calibration estimation using empirical likelihood in survey sampling. Statist. Sinica, 19, 145-157. · Zbl 1153.62006
[13] Kirkpatrick, S., Gelatt, C.D. & Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220, 671-680. · Zbl 1225.90162
[14] Leng, C. & Tang, C.Y. (2012). Penalized empirical likelihood and growing dimensional general estimating equations. Biometrika, 99, 703-716. · Zbl 1437.62522
[15] Nelder, J.A. & Mead, R. (1965). A simplex method for function minimization. Comput. J., 7, 308-313. · Zbl 0229.65053
[16] Oguz‐Alper, M. & Berger, Y.G. (2016). Modelling complex survey data with population level information: An empirical likelihood approach. Biometrika, 103, 447-459. · Zbl 1499.62056
[17] Owen, A.B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75, 237-249. · Zbl 0641.62032
[18] Owen, A.B. (2001). Empirical Likelihood.Chapman and Hall/CRC: New York. · Zbl 0989.62019
[19] Qin, J. & Lawless, J. (1994). Empirical likelihood and general estimating equations. Ann. Stat., 22, 300-325. · Zbl 0799.62049
[20] Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat., 6, 461-464. · Zbl 0379.62005
[21] Tang, C.Y. & Leng, C. (2010). Penalized high dimensional empirical likelihood. Biometrika, 97, 905-920. · Zbl 1204.62050
[22] Wu, C. & Rao, J.N.K. (2006). Pseudo empirical likelihood ratio confidence intervals for complex surveys. Canad. J. Statist., 34, 359-375. · Zbl 1104.62008
[23] Xu, C., Chen, J. & Mantel, H. (2013). Pseudo‐likelihood‐based Bayesian information criterion in analysis of survey data. Surv. Methodol., 39, 303-321.
[24] Zhao, P., Haziza, D. & Wu, C. (2018a). Sample empirical likelihood and the design‐based oracle variable selection theory. Statistica Sinica. Submitted.
[25] Zhao, P., Rao, J.N.K. & Wu, C. (2018b). Empirical likelihood methods with public‐use survey data.University of Waterloo: Waterloo, Canada. Working paper.
[26] Zhong, Bob, Chen, J. & Rao, J.N.K. (2000). Empirical likelihood inference in the presence of measurement error. Canad. J. Statist., 28, 841-852. · Zbl 0966.62006
[27] Zhong, B. & Rao, J.N.K. (2000). Empirical likelihood inference under stratified random sampling using auxiliary population information. Biometrika, 87, 929-938. · Zbl 1028.62008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.