×

Nonreciprocal amplification in coupled-rotating cavities around exceptional points. (English) Zbl 07767178

Summary: A nonreciprocal-amplified scheme for signal transmission is proposed in a coupled rotation-cavity system, where the two cavities rotate with opposite directions, and an optical parametric amplifier (OPA) is attached to one cavity. The coupling between cavities can effectively compensate and enhance the frequency shift of the Sagnac effect, and a perfect nonreciprocity can be achieved. Owing to the introduction of an OPA medium, eigenvalues of the dynamic matrix exhibit exceptional points (EPs), and the amplified-nonreciprocal transmission can be obtained around EPs.
© 2021 Wiley-VCH GmbH

MSC:

81-XX Quantum theory
Full Text: DOI

References:

[1] L.Bi, J.Hu, P.Jiang, G. F.Dionne, L. C.Kimerling, C.Ross, Nat. Photonics2011, 5, 758.
[2] P.Aleahmad, M.Khajavikhan, D.Christodoulides, P.LiKamaWa, Sci. Rep.2017, 7, 2129.
[3] F.AbdelMalek, W.Aroua, S.Haxha, I.Flint, Ann. Phys.2016, 528, 560.
[4] D.‐W.Wang, H.‐T.Zhou, M.‐J.Guo, J.‐X.Zhang, J.Evers, S.‐Y.Zhu, Phys. Rev. Lett.2013, 110, 093901.
[5] J.Volz, A.Rauschenbeutel, Science2013, 341, 725.
[6] B.Xiong, X.Li, S.‐L.Chao, L.Zhou, Europhys. Lett.2018, 122, 64002.
[7] D.Roy, Phys. Rev. A2017, 96, 033838.
[8] L. D.Bino, J. M.Silver, M. T. M.Woodley, S. L.Stebbings, X.Zhao, P.Del’Haye, Optica2018, 5, 279.
[9] M.‐A.Miri, F.Ruesink, E.Verhagen, A.Alù, Phys. Rev. Appl.2017, 7, 064014.
[10] X.‐W.Xia, J.‐P.Xu, Y.‐P.Yang, J. Opt. Soc. Am. B2014, 31, 2175.
[11] X.‐W.Xia, J.‐P.Xu, Y.‐P.Yang, Phys. Rev. A2014, 90, 043857.
[12] P.‐F.Yang, X.‐W.Xia, H.He, S.‐K.Li, X.Han, P.Zhang, G.Li, P.‐F.Zhang, J.‐P.Xu, Y.‐P.Yang, T.‐C.Zhang, Phys. Rev. Lett.2019, 123, 233604.
[13] W.‐A.Li, G.‐Y.Huang, Y.Chen, J. Opt. Soc. Am. B2019, 36, 306.
[14] C.Jiang, L. N.Song, Y.Li, Phys. Rev. A2019, 99, 023823.
[15] X. Z.Zhang, L.Tian, Y.Li, Phys. Rev. A2018, 97, 043818.
[16] C.Jiang, L. N.Song, Y.Li, Phys. Rev. A2018, 97, 053812.
[17] G. S.Agarwal, S.‐M.Huang, Phys. Rev. A2012, 85, 021801.
[18] X.Li, W.‐Z.Zhang, B.Xiong, L.Zhou, Sci. Rep.2016, 6, 39343.
[19] G.‐L.Li, X.Xiao, Y.Li, X.‐G.Wang, Phys. Rev. A2018, 97, 023801.
[20] X.‐W.Xu, Y.Li, Phys. Rev. A2015, 91, 053854.
[21] C.Shang, H. Z.Shen, X. X.Yi, Opt. Express2019, 27, 25882.
[22] Y.‐P.Wang, J. W.Rao, Y.Yang, P.‐C.Xu, Y.‐S.Gui, B.‐M.Yao, J.‐Q.You, C.‐M.Hu, Phys. Rev. Lett.2019, 123, 127202.
[23] C.Kong, H.Xiong, Y.Wu, Phys. Rev. Appl.2019, 12, 034001.
[24] J.‐H.Liu, Y.‐F.Yu, Z.‐M.Zhang, Opt. Express2019, 27, 15382.
[25] R.Pennetta, S.Xie, R.Zeltner, J.Hammer, P. S. J.Russell, Photon. Res.2020, 8, 844.
[26] D.Aghamalyan, J.‐B.You, H.‐S.Chu, C. E.Png, L.Krivitsky, L. C.Kwek, Phys. Rev. A2019, 100, 053851.
[27] C.Mathai, R.Jain, V. G.Achanta, S. P.Duttagupta, D.Ghindani, N. R.Joshi, R.Pinto, S. S.Prabhu, Opt. Lett.2018, 43, 5383.
[28] H.Jing, H.Lü, S. K.Özdemir, T.Carmon, F.Nori, Optica2018, 5, 1424.
[29] W.‐J.Chen, J.Zhang, B.Peng, Şahin KayaÖzdemir, X.‐D.Fan, L.Yang, Photon. Res.2017, 6, A23.
[30] B.Peng, Ş. K.Özdemir, F.‐C.Lei, F.Monifi, M.Gianfreda, G.‐L.Long, S.‐H.Fan, F.Nori, C. M.Bender, L.Yang, Nat. Phys.2014, 10, 394.
[31] L.Chang, X. S.Jiang, S.‐Y.Hua, C.Yang, J. M.Wen, L.Jiang, G.‐Y.Li, G.‐Z.Wang, M.Xiao, Nat. Photonics2014, 8, 524.
[32] Z.Shen, Y.‐L.Zhang, Y.Chen, F.‐W.Sun, X.‐B.Zou, G.‐C.Guo, C.‐L.Zou, C.‐H.Dong, Nat. Commun.2018, 9, 1797.
[33] E. J.POST, Rev. Mod. Phys.1967, 39, 475.
[34] G. B.Malykin, Phys.‐Usp.2000, 43, 1229.
[35] R.Huang, A.Miranowicz, J.‐Q.Liao, F.Nori, H.Jing, Phys. Rev. Lett.2018, 121, 153601.
[36] B.‐J.Li, R.Huang, X.‐W.Xu, M.Adam, H.Jing, Photon. Res.2019, 7, 630.
[37] Y.Jiang, S.Maayani, T.Carmon, F.Nori, H.Jing, Phys. Rev. Appl.2018, 10, 064037.
[38] W.‐A.Li, G.‐Y.Huang, J.‐P.Chen, Y.Chen, Phys. Rev. A2020, 102, 033526.
[39] Z.‐B.Yang, J.‐S.Liu, A.‐D.Zhu, H.‐Y.Liu, R.‐C.Yang, Ann. Phys.2020, 532, 2000196.
[40] S.‐S.Chen, S.‐S.Meng, H.Deng, G.‐J.Yang, Ann. Phys.533, 2000343.
[41] S.Maayani, R.Dahan, Y.Kligerman, E.Moses, A. U.Hassan, H.Jing, F.Nori, D. N.Christodoulides, T.Carmon, Nature2018, 558, 569.
[42] S.Longhi, Ann. Phys.2019, 531, 1900054. · Zbl 07760928
[43] Z.Lin, H.Ramezani, T.Eichelkraut, T.Kottos, H.Cao, D. N.Christodoulides, Phys. Rev. Lett.2011, 106, 213901.
[44] D. V.Novitsky, V. R.Tuz, S. L.Prosvirnin, A. V.Lavrinenko, A. V.Novitsky, Phys. Rev. B2017, 96, 235129.
[45] E. X.DeJesus, C.Kaufman, Phys. Rev. A1987, 35, 5288.
[46] W.Chen, J.Zhang, B.Peng, Şahin KayaÖzdemir, X.Fan, L.Yang, Photon. Res.2018, 6, A23.
[47] K.Stannigel, P.Rabl, A. S.Sørensen, M. D.Lukin, P.Zoller, Phys. Rev. A2011, 84, 042341.
[48] P. C.Burke, J.Wiersig, M.Haque, Phys. Rev. A2020, 102, 012212.
[49] J.Ahn, Z.‐J.Xu, J.Bang, Y.‐H.Deng, T. M.Hoang, Q.‐K.Han, R.‐M.Ma, T.‐C.Li, Phys. Rev. Lett.2018, 121, 033603.
[50] R.Reimann, M.Doderer, E.Hebestreit, R.Diehl, M.Frimmer, D.Windey, F.Tebbenjohanns, L.Novotny, Phys. Rev. Lett.2018, 121, 033602.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.