×

Data-driven reduced order modeling for parametric PDE eigenvalue problems using Gaussian process regression. (English) Zbl 07766241

Summary: In this article, we propose a data-driven reduced basis (RB) method for the approximation of parametric eigenvalue problems. The method is based on the offline and online paradigms. In the offline stage, we generate snapshots and construct the basis of the reduced space, using a POD approach. Gaussian process regressions (GPR) are used for approximating the eigenvalues and projection coefficients of the eigenvectors in the reduced space. All the GPR corresponding to the eigenvalues and projection coefficients are trained in the offline stage, using the data generated in the offline stage. The output corresponding to new parameters can be obtained in the online stage using the trained GPR. The proposed algorithm is used to solve affine and non-affine parameter-dependent eigenvalue problems. The numerical results demonstrate the robustness of the proposed non-intrusive method.

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Pxx Spectral theory and eigenvalue problems for partial differential equations

Software:

redbKIT

References:

[1] Alghamdi, M. M.; Bertrand, F.; Boffi, D.; Bonizzoni, F.; Halim, A.; Priyadarshi, G., On the matching of eigensolutions to parametric partial differential equations
[2] Alghamdi, M. M.; Boffi, D.; Bonizzoni, F., A greedy MOR method for the tracking of eigensolutions to parametric elliptic PDEs (2022)
[3] Benner, P.; Mehrmann, V.; Sorensen, D., Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering (2003), Springer: Springer Heidelberg · Zbl 1066.65004
[4] Bertrand, F.; Boffi, D.; Halim, A., A reduced order model for the finite element approximation of eigenvalue problems. Comput. Methods Appl. Mech. Eng. (2023) · Zbl 1536.65135
[5] Bertrand, F.; Moldenhauer, M.; Starke, G., A posteriori error estimation for planar linear elasticity by stress reconstruction. Comput. Methods Appl. Math., 3, 663-679 (2019) · Zbl 1420.65117
[6] Boffi, D., Finite element approximation of eigenvalue problems. Acta Numer., 1-120 (2010) · Zbl 1242.65110
[7] Boffi, D.; Brezzi, F.; Fortin, M., Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics (2013), Springer: Springer Heidelberg · Zbl 1277.65092
[8] Boffi, D.; Brezzi, F.; Gastaldi, L., On the convergence of eigenvalues for mixed formulations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., 1-2, 131-154 (1997) · Zbl 1003.65052
[9] Boffi, D.; Brezzi, F.; Gastaldi, L., On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Compet., 229, 121-140 (2000) · Zbl 0938.65126
[10] Boffi, D.; Gastaldi, L., Adaptive finite element method for the Maxwell eigenvalue problem. SIAM J. Numer. Anal., 1, 478-494 (2019) · Zbl 1412.65202
[11] Buchan, A. G.; Pain, C.; Navon, I., A POD reduced order model for eigenvalue problems with application to reactor physics. Int. J. Numer. Methods Eng., 12, 1011-1032 (2013) · Zbl 1352.82018
[12] Dobson, D. C.; Santosa, F., Optimal localization of eigenfunctions in an inhomegeneous medium. SIAM J. Appl. Math., 3, 762-774 (2004) · Zbl 1060.65068
[13] Fumagalli, I.; Manzoni, A.; Parolini, N.; Verani, M., Reduced basis approximation and a posteriori error estimates for parametrized elliptic eigenvalue problems. ESAIM: Math. Model. Numer. Anal., 6, 1857-1885 (2016) · Zbl 1355.65149
[14] Gao, H.; Matsumoto, T.; Takahashi, T.; Isakari, H., Eigenvalue analysis for acoustic problem in 3d by boundary element method with the block Sakurai-Sugiura method. Eng. Anal. Bound. Elem., 6, 914-923 (2013) · Zbl 1287.76174
[15] Gedicke, J.; Khan, A., Arnold-winther mixed finite elements for Stokes eigenvalue problems. SIAM J. Sci. Comput., 5, A3449-A3469 (2018) · Zbl 1407.65266
[16] German, P.; Ragusa, J. C., Reduced-order modeling of parameterized multi-group diffusion k-eigenvalue problems. Ann. Nucl. Energy, 144-157 (2019)
[17] Giani, S.; Graham, I. G., Adaptive finite element methods for computing band gaps in photonic crystals. Numer. Math., 1, 31-64 (2012) · Zbl 1241.82077
[18] Gilbert, A. D.; Graham, I. G.; Kuo, F. Y.; Scheichl, R.; Sloan, I. H., Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients. Numer. Math., 4, 863-915 (2019) · Zbl 1416.65018
[19] Guo, M.; Hesthaven, J. S., Reduced order modeling for nonlinear structural analysis using Gaussian process regression. Comput. Methods Appl. Mech. Eng., 807-826 (2018) · Zbl 1440.65206
[20] Guo, M.; Hesthaven, J. S., Data-driven reduced order modeling for time-dependent problems. Comput. Methods Appl. Mech. Eng., 75-99 (2019) · Zbl 1440.62346
[21] Hesthaven, J.; Rozza, G.; Stamm, B., Certified Reduced Basis Methods for Parametrized Partial Differential Equations (2016), Springer International Publishing: Springer International Publishing Bilbao · Zbl 1329.65203
[22] Hintermüller, M.; Kao, C. Y.; Laurain, A., Principal eigenvalue minimization for an elliptic problem with indefinite weight and Robin boundary conditions. Appl. Math. Optim., 1, 111-146 (2012) · Zbl 1242.49094
[23] Horger, T.; Wohlmuth, B.; Dickopf, T., Simultaneous reduced basis approximation of parameterized elliptic eigenvalue problems. ESAIM: M2AN, 2, 443-465 (2017) · Zbl 1362.65121
[24] Huynh, D. B.P.; Rozza, G.; Sen, S.; Patera, A. T., A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math., 8, 473-478 (2007) · Zbl 1127.65086
[25] Ito, K.; Ravindran, S. S., A reduced-order method for simulation and control of fluid flows. J. Comput. Phys., 2, 403-425 (1998) · Zbl 0936.76031
[26] Jamelot, E.; Ciarlet, P., Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation. J. Comput. Phys., 445-463 (2013) · Zbl 1349.65428
[27] Kuchment, P., The Mathematics of Photonic Crystals, 207-272 (2001), SIAM, chapter 7 · Zbl 0986.78004
[28] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math., 1, 117-148 (2001) · Zbl 1005.65112
[29] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal., 2, 492-515 (2002) · Zbl 1075.65118
[30] Machiels, L.; Maday, Y.; Oliveira, I. B.; Patera, A. T.; Rovas, D. V., Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems. C. R. Acad. Sci., Sér. 1 Math., 2, 153-158 (2000) · Zbl 0960.65063
[31] Nguyen, N. C.; Veroy, K.; Patera, A. T., Certified real-time so-lution of parametrized partial differential equations
[32] Osher, S. J.; Santosa, F., Level set methods for optimization problems involving geometry and constraints: I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys., 1, 272-288 (2001) · Zbl 1056.74061
[33] Pau, G. S.H., Reduced-basis method for band structure calculations. Phys. Rev. E (2007)
[34] Pau, G. S.H., Reduced basis method for quantum models of crystalline solids (2008), Massachusetts Institute of Technology, Ph.D. thesis
[35] Peterson, J. S., The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput., 4, 777-786 (1989) · Zbl 0672.76034
[36] Prud’homme, C.; Rovas, D. V.; Veroy, K.; Patera, A. T., A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations. ESAIM: Math. Model. Numer. Anal., 5, 747-771 (2002) · Zbl 1024.65104
[37] Prud’homme, C.; Rovas, D. V.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A. T.; Turinici, G., Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J. Fluids Eng., 1, 70-80 (2002)
[38] Quarteroni, A.; Manzoni, A.; Negri, F., Reduced Basis Methods for Partial Differential Equations: An Introduction (2016), Springer · Zbl 1337.65113
[39] Quarteroni, A.; Rozza, G., Numerical solution of parametrized Navier-Stokes equations by reduced basis methods. Numer. Methods Partial Differ. Equ., 4, 923-948 (2007) · Zbl 1178.76238
[40] Rasmussen, C. E.; Williams, C. K., Gaussian Processes for Machine Learning (2006), MIT Press: MIT Press Cambridge · Zbl 1177.68165
[41] Rasmussen, C. E., Gaussian process in machine learning, 63-71 · Zbl 1120.68436
[42] Sullivan, T. J., Introduction to Uncertainty Quantification (2015), Springer · Zbl 1336.60002
[43] Türk, Ö.; Boffi, D.; Codina, R., A stabilized finite element method for the two-field and three-field Stokes eigenvalue problems. Comput. Methods Appl. Mech. Eng., 886-905 (2016) · Zbl 1439.76099
[44] Veroy, K.; Prud’homme, C.; Rovas, D. V.; Patera, A. T., A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations
[45] Willcox, K.; Peraire, J., Balanced model reduction via the proper orthogonal decomposition. AIAA J., 11, 2323-2330 (2002)
[46] Zheng, C. J.; Zhang, C.; Bi, C. X.; Gao, H. F.; Du, L.; Chen, H. B., Coupled FE-BE method for eigenvalue analysis of elastic structures submerged in an infinite fluid domain. Int. J. Numer. Methods Eng., 2, 163-185 (2017) · Zbl 1365.74072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.