×

An improved stabilized element-free Galerkin method for solving steady Stokes flow problems. (English) Zbl 07764786

Summary: Combining the dimensional splitting moving least squares (DSMLS) approximation and the variational weak form, this paper developed an improved stabilized element-free Galerkin (ISEFG) method for Stokes problems. In the ISEFG method, the DSMLS approximation is adopted to construct the shape function, and the stabilization factor is established based on the solution space of velocity and pressure. The Galerkin weak form and integral coordinate transformation are taken to achieve the final discrete equations of the problems. Following the ideas of the dimensional splitting method, the DSMLS method approximates the functions from the direction of dimension splitting and the dimension-splitting subdivision surfaces. Then the ISEFG method can reduce the dimensionality and complexity of matrix operations in solving the shape function, thereby improving the efficiency and accuracy. This paper introduces several numerical examples to demonstrate the effectiveness of the stabilized meshless method. The numerical examples show that the ISEFG method based on the DSMLS approximation can find stable solutions of the velocities and pressure without physical oscillation. The method presented in this paper offers higher accuracy and consumes less CPU time than the EFG method based on the MLS approximation.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows
Full Text: DOI

References:

[1] Zheng, S.; Liu, Z., The machine learning embedded method of parameters determination in the constitutive models and potential applications for hydrogels. Int. J. Appl. Mech. (2021)
[2] Huang, R.; Zheng, S.; Liu, Z.; Ng, T. Y., Recent advances of the constitutive models of smart materials—hydrogels and shape memory polymers. Int. J. Appl. Mech. (2020)
[3] Abbaszadeh, M.; Dehghan, M.; Khodadadian, A.; Noii, N.; Heitzinger, C.; Wick, T., A reduced-order variational multiscale interpolating element free Galerkin technique based on proper orthogonal decomposition for solving Navier-Stokes equations coupled with a heat transfer equation: nonstationary incompressible boussinesq equations. J. Comput. Phys. (2021) · Zbl 07510038
[4] Lin, J.; Zhang, Y.; Reutskiy, S.; Feng, W., A novel meshless space-time backward substitution method and its application to nonhomogeneous advection-diffusion problems. Appl. Math. Comput. (2021) · Zbl 1508.65143
[5] Mazhar, F.; Javed, A.; Xing, J. T.; Shahzad, A.; Mansoor, M.; Maqsood, A.; Shah, S. I.A.; Asim, K., On the meshfree particle methods for fluid-structure interaction problems. Eng. Anal. Bound. Elem., 14-40 (2021) · Zbl 1464.76150
[6] Abbaszadeh, M.; Dehghan, M., The fourth-order time-discrete scheme and split-step direct meshless finite volume method for solving cubic-quintic complex Ginzburg-Landau equations on complicated geometries. Eng. Comput., 1-15 (2020)
[7] Ma, X.; Zhou, B.; Xue, S., A meshless hermite weighted least-square method for piezoelectric structures. Appl. Math. Comput. (2021) · Zbl 1508.78015
[8] Zhang, T.; Li, X., Analysis of the element-free Galerkin method with penalty for general second-order elliptic problems. Appl. Math. Comput. (2020) · Zbl 1462.65207
[9] Oruç, Ö., An efficient meshfree method based on pascal polynomials and multiple-scale approach for numerical solution of 2-D and 3-D second order elliptic interface problems. J. Comput. Phys. (2021) · Zbl 07511427
[10] He, F.; Zhang, H.; Huang, C.; Liu, M., A stable SPH model with large CFL numbers for multi-phase flows with large density ratios. J. Comput. Phys. (2022) · Zbl 07517716
[11] Abbaszadeh, M.; Dehghan, M., Numerical investigation of reproducing kernel particle Galerkin method for solving fractional modified distributed-order anomalous sub-diffusion equation with error estimation. Appl. Math. Comput. (2021) · Zbl 1474.65340
[12] Lin, Z.; Liu, F.; Wang, D.; Gu, Y., Reproducing kernel particle method for two-dimensional time-space fractional diffusion equations in irregular domains. Eng. Anal. Bound. Elem., 131-143 (2018) · Zbl 1404.65095
[13] Peng, P. P.; Fu, Y. D.; Cheng, Y. M., A hybrid reproducing kernel particle method for three-dimensional advection-diffusion problems. Int. J. Appl. Mech. (2021)
[14] Qin, S. P.; Wei, G. F.; Liu, Z.; Shen, X. H., Elastodynamic analysis of functionally graded beams and plates based on meshless RKPM. Int. J. Appl. Mech. (2021)
[15] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods. Int. J. Numer. Methods Eng., 229-256 (1994) · Zbl 0796.73077
[16] Li, X.; Li, S., A linearized element-free Galerkin method for the complex Ginzburg-Landau equation. Comput. Math. Appl., 135-147 (2021) · Zbl 1524.65572
[17] Singh, A. K.; Singh, K. M., The GMRES solver for the interpolating meshless local Petrov-Galerkin method applied to heat conduction. Eng. Comput., 493-522 (2021)
[18] Li, Y.; Liu, G. R.; Yue, J. H., A novel node-based smoothed radial point interpolation method for 2D and 3D solid mechanics problems. Comput. Struct., 157-172 (2018)
[19] Liu, G.; Gu, Y., A point interpolation method for two-dimensional solids. Int. J. Numer. Methods Eng., 937-951 (2001) · Zbl 1050.74057
[20] Karabaş, N.0.; Korkut, S.Ö.; Tanoğlu, G.; Aziz, I., An efficient approach for solving nonlinear multidimensional Schrödinger equations. Eng. Anal. Bound. Elem., 263-270 (2021) · Zbl 1521.65099
[21] Nikan, O.; Avazzadeh, Z.; Machado, J. A.; Rasoulizadeh, M. N., An accurate localized meshfree collocation technique for the telegraph equation in propagation of electrical signals. Eng. Comput., 1-18 (2022)
[22] Oruç, Ö., A strong-form local meshless approach based on radial basis function-finite difference (RBF-FD) method for solving multi-dimensional coupled damped Schrödinger system appearing in Bose-Einstein condensates. Commun. Nonlinear Sci. Numer. Simul. (2022) · Zbl 1530.65133
[23] Rasoulizadeh, M. N.; Ebadi, M. J.; Avazzadeh, Z.; Nikan, O., An efficient local meshless method for the equal width equation in fluid mechanics. Eng. Anal. Bound. Elem., 258-268 (2021) · Zbl 1521.76754
[24] Mohammadi, M.; Hematiyan, M. R.; Shiah, Y. C., An efficient boundary-type meshfree method for analysis of two-dimensional laser heating problems. Eng. Anal. Bound. Elem., 460-468 (2021) · Zbl 1521.80032
[25] Wang, J.; Wang, J.; Sun, F.; Cheng, Y., An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems. Int. J. Comput. Methods (2013) · Zbl 1359.65282
[26] Yue, X.; Wang, F.; Zhang, C.; Zhang, H., Localized boundary knot method for 3D inhomogeneous acoustic problems with complicated geometry. Appl. Math. Model., 410-421 (2021) · Zbl 1481.65247
[27] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods. Math. Comput., 141-158 (1981) · Zbl 0469.41005
[28] Cheng, J.; Luo, X., Analyzing the land leasing behavior of the government of Beijing, China, via the multinomial logit model. Land, 376 (2022)
[29] Sun, F.; Wang, J., Interpolating element-free Galerkin method for the regularized long wave equation and its error analysis. Appl. Math. Comput., 54-69 (2017) · Zbl 1427.65262
[30] Wang, J.; Sun, F., An interpolating meshless method for the numerical simulation of the time-fractional diffusion equations with error estimates. Eng. Comput., 730-752 (2019)
[31] Zhu, T.; Zhang, J.; Atluri, S. N., A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Comput. Mech., 223-235 (1998) · Zbl 0920.76054
[32] Wang, F.; Gu, Y.; Qu, W.; Zhang, C., Localized boundary knot method and its application to large-scale acoustic problems. Comput. Meth. Appl. Mech. Eng. (2020) · Zbl 1442.76071
[33] Wang, Q.; Zhou, W.; Cheng, Y.; Ma, G.; Chang, X.; Miao, Y.; Chen, E., Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices. Appl. Math. Comput., 120-145 (2018) · Zbl 1429.65042
[34] Liew, K. M.; Cheng, Y.; Kitipornchai, S., Boundary element-free method (BEFM) for two-dimensional elastodynamic analysis using Laplace transform. Int. J. Numer. Methods Eng., 1610-1627 (2005) · Zbl 1122.74533
[35] Liew, K. M.; Feng, C.; Cheng, Y.; Kitipornchai, S., Complex variable moving least-squares method: a meshless approximation technique. Int. J. Numer. Methods Eng., 46-70 (2007) · Zbl 1194.74554
[36] Chen, S.; Wang, W.; Zhao, X., An interpolating element-free Galerkin scaled boundary method applied to structural dynamic analysis. Appl. Math. Model., 494-505 (2019) · Zbl 1481.74708
[37] Wang, J.; Bai, F.; Cheng, Y., A meshless method for the nonlinear generalized regularized long wave equation. Chin. Phys. B (2011)
[38] Dehghan, M.; Abbaszadeh, M., A reduced proper orthogonal decomposition (POD) element free Galerkin (POD-EFG) method to simulate two-dimensional solute transport problems and error estimate. Appl. Numer. Math., 92-112 (2018) · Zbl 1380.65255
[39] Li, K.; Huang, A.; Zhang, W. L., A dimension split method for the 3-d compressible Navier-Stokes equations in turbomachine. Communications in numerical methods in engineering, 1-14 (2002) · Zbl 0999.76080
[40] Wu, Q.; Peng, M.; Cheng, Y., The interpolating dimension splitting element-free Galerkin method for 3D potential problems. Eng. Comput., 1-15 (2021)
[41] Cheng, H.; Peng, M. J.; Cheng, Y. M., The dimension splitting and improved complex variable element-free Galerkin method for 3-dimensional transient heat conduction problems. Int. J. Numer. Methods Eng., 321-345 (2018) · Zbl 07878335
[42] Wang, J.; Sun, F., A hybrid generalized interpolated element-free Galerkin method for Stokes problems. Eng. Anal. Bound. Elem., 88-100 (2020) · Zbl 1464.65187
[43] Meng, Z.; Chi, X., An improved interpolating dimension splitting element-free Galerkin method for 3D wave equations. Eng. Anal. Bound. Elem., 96-106 (2022) · Zbl 1521.74235
[44] Sun, F.; Wang, J.; Wu, Y.; Wei, Q., An improved element-free Galerkin method based on the dimension splitting moving least-squares method for 2D potential problems in irregular domains. Int. J. Appl. Mech. (2022)
[45] Wang, J.; Sun, F.; Cheng, R., A dimension splitting-interpolating moving least squares (DS-IMLS) method with nonsingular weight functions. Mathematics, 2424 (2021)
[46] Shahane, S.; Radhakrishnan, A.; Vanka, S. P., A high-order accurate meshless method for solution of incompressible fluid flow problems. J. Comput. Phys. (2021) · Zbl 07515868
[47] Douglas, J.; Wang, J. P., An absolutely stabilized finite element method for the Stokes problem. Math. Comput., 495-508 (1989) · Zbl 0669.76051
[48] Wang, X. Wang; Zhai, Q.; Zhang, R., A weak Galerkin finite element scheme for solving the stationary Stokes equations. J. Comput. Appl. Math., 171-185 (2016) · Zbl 1337.65162
[49] Kamranian, M.; Tatari, M.; Dehghan, M., Analysis of the stabilized element free Galerkin approximations to the Stokes equations. Appl. Numer. Math., 325-340 (2020) · Zbl 1448.76069
[50] Hu, G.; Li, R.; Zhang, X., A novel stabilized Galerkin meshless method for steady incompressible Navier-Stokes equations. Eng. Anal. Bound. Elem., 95-106 (2021) · Zbl 1521.76339
[51] Zhang, T.; Li, X., A generalized element-free Galerkin method for Stokes problem. Comput. Math. Appl., 3127-3138 (2018) · Zbl 1409.76069
[52] Hughes, T. J.; Franca, L. P.; Balestra, M., A new finite element formulation for computational fluid dynamics: v. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Meth. Appl. Mech. Eng., 85-99 (1986) · Zbl 0622.76077
[53] Kolodziej, S. P.; Aznaveh, M.; Bullock, M.; David, J.; Davis, T. A.; Henderson, M.; Hu, Y.; Sandstrom, R., The SuiteSparse Matrix Collection Website Interface. Journal of Open Source Software, 1244 (2019)
[54] Li, X., A meshless interpolating Galerkin boundary node method for Stokes flows. Eng. Anal. Bound. Elem., 112-122 (2015) · Zbl 1403.76090
[55] Young, D. L.; Chiu, C. L.; Fan, C. M.; Tsai, C. C.; Lin, Y. C., Method of fundamental solutions for multidimensional Stokes equations by the dual-potential formulation. European Journal of Mechanics-B/Fluids, 877-893 (2006) · Zbl 1106.76020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.