×

Extreme value theory and statistics of univariate extremes: a review. (English) Zbl 07763438

Summary: Statistical issues arising in modelling univariate extremes of a random sample have been successfully used in the most diverse fields, such as biometrics, finance, insurance and risk theory. Statistics of univariate extremes (SUE), the subject to be dealt with in this review paper, has recently faced a huge development, partially because rare events can have catastrophic consequences for human activities, through their impact on the natural and constructed environments. In the last decades, there has been a shift from the area of parametric SUE, based on probabilistic asymptotic results in extreme value theory, towards semi-parametric approaches. After a brief reference to Gumbel’s block methodology and more recent improvements in the parametric framework, we present an overview of the developments on the estimation of parameters of extreme events and on the testing of extreme value conditions under a semi-parametric framework. We further discuss a few challenging topics in the area of SUE.
© 2014 The Authors. International Statistical Review © 2014 International Statistical Institute
{©2014 The Authors. International Statistical Review © 2014 International Statistical Institute}

MSC:

62-XX Statistics

Software:

ismev; AS 215

References:

[1] Aarssen, K. & deHaan, L. (1994). On the maximal life span of humans. Math. Popul. Stud., 4(4), 259-281. · Zbl 0872.62096
[2] Achcar, A. J., Bolfarine, H. & Pericchi, L. R. (1987). Transformation of a survival data to an extreme value distribution. Statistician, 36, 229-234.
[3] Anderson, C. W. (1971). Contributions to the Asymptotic Theory of Extreme Values, University of London, Ph.D. Thesis.
[4] Araújo Santos, P., Fraga Alves, M. I. & Gomes, M. I. (2006). Peaks over random threshold methodology for tail index and high quantile estimation. REVSTAT, 4(3), 227-247. · Zbl 1125.62047
[5] Arnold, B., Balakrishnan, N. & Nagaraja, H. N. (1992). A First Course in Order Statistics. Wiley: New York. · Zbl 0850.62008
[6] Ashour, S. K. & El‐Adl, Y. M. (1980). Bayesian estimation of the parameters of the extreme value distribution. Egypt Stat. J., 24, 140-152.
[7] Balakrishnan, N. & Chan, P. S. (1992). Order statistics from extreme value distribution, II: best linear unbiased estimates and some other uses. Comm. Stat. Simul. Comput., 21, 1219-1246. · Zbl 0775.62121
[8] Balkema, A. A & deHaan, L. (1974). Residual life time at great age. Ann. Probab., 2, 792-804. · Zbl 0295.60014
[9] Bardsley, W. E. (1977). A test for distinguishing between extreme value distributions. J. Hydrol., 34, 377-381.
[10] Basu, A., Harris, I. R., Hjort, N. L. & Jones, M. C. (1998). Robust and efficient estimation by minimizing a density power divergence. Biometrika, 85, 549-559. · Zbl 0926.62021
[11] Beirlant, J., Boniphace, E. & Dierckx, G. (2011). Generalized sum plots. REVSTAT, 9(2), 181-198. · Zbl 1297.62113
[12] Beirlant, J., Caeiro, F. & Gomes, M. I. (2012). An overview and open research topics in statistics of univariate extremes. REVSTAT, 10(1), 1-31. · Zbl 1297.62114
[13] Beirlant, J, deWet, T. & Goegebeur, Y. (2006). A goodness‐of‐fit statistic for Pareto‐type behaviour. J. Comput. Appl. Math., 186, 99-116. · Zbl 1073.62045
[14] Beirlant, J., Dierckx, G., Goegebeur, Y. & Matthys, G. (1999). Tail index estimation and an exponential regression model. Extremes, 2, 177-200. · Zbl 0947.62034
[15] Beirlant, J., Dierckx, G. & Guillou, A. (2005). Estimation of the extreme‐value index and generalized quantile plots. Bernoulli, 11(6), 949-970. · Zbl 1123.62034
[16] Beirlant, J., Dierckx, G., Guillou, A. & Starica, C. (2002). On exponential representations of log‐spacings of extreme order statistics. Extremes, 5(2), 157-180. · Zbl 1036.62040
[17] Beirlant, J., Figueiredo, F., Gomes, M. I. & Vandewalle, B.. Improved reduced bias tail index and quantile estimators (2008). J. Stat. Plann. Inference, 138(6), 1851-1870. · Zbl 1131.62041
[18] Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J. (2004). Statistics of Extremes: Theory and Applications. England: Wiley. · Zbl 1070.62036
[19] Beirlant, J. & Guillou, A. (2001). Pareto index estimation under moderate right censoring. Scand. Actuar. J., 2, 111-125. · Zbl 0979.91047
[20] Beirlant, J., Guillou, A., Dierckx, G. & Fils‐Viletard, A. (2007). Estimation of the extreme value index and extreme quantiles under random censoring. Extremes, 10(3), 151-174. · Zbl 1157.62027
[21] Beirlant, J., Guillou, A., Toulemonde, G. (2010). Peaks‐over‐threshold modeling under random censoring. Comm. Stat. Theory Methods, 39, 1158-1179. · Zbl 1284.62612
[22] Beirlant, J., Joossens, E. & Segers, J. (2009). Second‐order refined peaks‐over‐threshold modelling for heavy‐tailed distributions. J. Stat. Plann. Inference, 139, 2800-2815. · Zbl 1162.62044
[23] Beirlant, J., Teugels, J. & Vynckier, P. (1996a). Practical Analysis of Extreme Values. Leuven, Belgium: Leuven University Press. · Zbl 0888.62003
[24] Beirlant, J., Vynckier, P. & Teugels, J. (1996b). Excess functions and estimation of the extreme‐value index. Bernoulli, 2, 293-318. · Zbl 0870.62019
[25] Beirlant, J., Vynckier, P. & Teugels, J. (1996c). Tail index estimation, Pareto quantile plots and regression diagnostics. J. Am. Stat. Assoc., 91, 1659-1667. · Zbl 0881.62077
[26] Beran, J., Schell, D. & Stehlik, M. (2014). The harmonic moment tail index estimator: asymptotic distribution and robustness. Ann. Inst. Stat. Math., 66, 193-220. · Zbl 1281.62123
[27] Bingham, N., Goldie, C. M. & Teugels, J. L. (1987). Regular Variation. Cambridge: Cambridge Univ. Press. · Zbl 0617.26001
[28] Bottolo, L., Consonni, G., Dellaportas, P. & Lijoi, A. (2003). Bayesian analysis of extreme values by mixture modeling. Extremes, 6(1), 25-47. · Zbl 1053.62061
[29] Brazauskas, V. & Serfling, R. (2000). Robust estimation of tail parameters for two‐parameter Pareto and exponential models via generalized quantile statistics. Extremes, 3, 231-249. · Zbl 0979.62016
[30] Brilhante, M. F. (2004). Exponentiality versus generalized Pareto—a resistant and robust test. REVSTAT, 2(1), 1-13. · Zbl 1132.62322
[31] Brilhante, F., Gomes, M. I. & Pestana, D. (2013). A simple generalization of the Hill estimator. Comput. Stat. Data Anal., 57(1), 518-535. · Zbl 1365.62148
[32] Caeiro, F. & Gomes, M. I. (2009). Semi‐parametric second‐order reduced‐bias high quantile estimation. TEST, 18(2), 392-413. · Zbl 1203.62034
[33] Caeiro, F., Gomes, M. I. (2011). Semi‐parametric tail inference through probability‐weighted moments. J. Stat. Plann. Inference, 141(2), 937-950. · Zbl 1200.62052
[34] Caeiro, F., Gomes, M. I., Henriques‐Rodrigues, L. (2009). Reduced‐bias tail index estimators under a third order framework. Comm. Stat. Theory Methods, 38(7), 1019-1040. · Zbl 1162.62357
[35] Caeiro, F., Gomes, M. I., Pestana, D. (2005). Direct reduction of bias of the classical Hill estimator. REVSTAT, 3(2), 113-136. · Zbl 1108.62049
[36] Caeiro, F., Gomes, M. I. & Vandewalle, B. (2014). Semi‐parametric probability‐weighted moments estimation revisited. Method. Comput. Appl. Probab., 16(1), 1-29. · Zbl 1284.62297
[37] Cai, J, deHaan, L., Zhou, C. (2013). Bias correction in extreme value statistics with index around zero. Extremes, 16, 173-201. · Zbl 1266.62094
[38] Canto e Castro, L. & Dias, S. (2011). Generalized Pickands’ estimators for the tail index parameter and max‐semistability. Extremes, 14(4), 429-449. · Zbl 1329.62224
[39] Canto e Castro, L., Dias, S. & Temido, M. G. (2011). Looking for max‐semistability: a new test for the extreme value condition. J. Stat. Plann. Inference, 141, 3005-3020. · Zbl 1333.62137
[40] Canto e Castro, L., deHaan, L. & Temido, M. G. (2002). Rarely observed maxima. Theory Probab. Appl., 45, 658-661. · Zbl 0992.60055
[41] Castillo, E., Galambos, J. & Sarabia, J. M. (1989). The selection of the domain of attraction of an extreme value distribution from a set of data. In Extreme Value Theory, Proc. Oberwolfach 1987. Eds. J.Hüsler (ed.) & R.‐D.Reiss (ed.), 181-190, Berlin‐Heidelberg: Springer. · Zbl 0672.62035
[42] Castillo, E. & Hadi, A. (1997). Fitting the generalized Pareto distribution to data. J. Am. Stat. Assoc., 92, 1609-1620. · Zbl 0919.62014
[43] Castillo, E., Hadi, A., Balakrishnan, N. & Sarabia, J. M. (2005). Extreme Value and Related Models with Applications in Engineering and Science. Hoboken, New Jersey: Wiley. · Zbl 1072.62045
[44] Chaouche, A. & Bacro, J. ‐N. (2004). A statistical test procedure for the shape parameter of a generalized Pareto distribution. Comput. Stat. Data Anal., 45, 787-803. · Zbl 1429.62066
[45] Choulakian, V. & Stephens, M. A. (2001). Goodness‐of‐fit tests for the generalized Pareto distribution. Technometrics, 43(4), 478-484.
[46] Christopeit, N. (1994). Estimating parameters of an extreme value distribution by the method of moments. J. Stat. Plann. Inference, 41, 173-186. · Zbl 0798.62033
[47] Coles, S. G.. (2001). An Introduction to Statistical Modelling of Extreme Values, Springer Series in Statistics. London: Springer‐Verlag. · Zbl 0980.62043
[48] Coles, S. G. & Dixon, M. J. (1999). Likelihood‐based inference for extreme value models. Extremes, 2(1), 5-23. · Zbl 0938.62013
[49] Coles, S. & Powell, E. (1996). Bayesian methods in extreme value modelling: a review and new developments. Int. Stat. Rev., 64(1), 119-136. · Zbl 0853.62025
[50] Coles, S. & Tawn, J. (1996). A Bayesian analysis of extreme rainfall data. J. R. Stat. Soc. Ser. C. Appl. Stat., 45(4), 463-478.
[51] Crovella, M. & Taqqu, M. (1999). Estimating the heavy tail index from scaling properties. Method. Comput. Appl. Probab., 1, 55-79. · Zbl 0934.62031
[52] Csörgő, S., Deheuvels, P. & Mason, D. M. (1985). Kernel estimates of the tail index of a distribution. Ann. Stat., 13, 1050-1077. · Zbl 0588.62051
[53] Csörgő, S., Mason, D. M. (1989) Simple estimators of the endpoint of a distribution. In Extreme Value Theory, Proceedings Oberwolfach 1987, pp. 132-147. Berlin, Heidelberg: Springer‐Verlag. · Zbl 0682.62015
[54] Danielsson, J., deHaan, L., Peng, L. & deVries, C. G. (2001). Using a bootstrap method to choose the sample fraction in tail index estimation. J. Multivariate Anal., 76, 226-248. · Zbl 0976.62044
[55] David, H. A. (1970). Order Statistics 1st ed. New York: Wiley. 2nd ed., 1981. · Zbl 0223.62057
[56] David, H. A., Nagaraja, H. N. (2003). Order Statistics, 3rd ed. Hoboken, New Jersey: Wiley. · Zbl 1053.62060
[57] Davison, A (1984). Modeling excesses over high threshold with an application. In Statistical Extremes and Applications, Ed. J. TiagodeOliveira (ed.), pp. 461-482, Dordrecht: D. Reidel.
[58] Davison, A. C. & Smith, R. L. (1990). Models for exceedances over high thresholds. J. R. Stat. Soc. Ser. B. Stat. Method., 52, 393-442. · Zbl 0706.62039
[59] Dekkers, A. L. M., Einmahl, J. H. J & deHaan, L. (1989). A moment estimator for the index of an extreme‐value distribution. Ann. Stat., 17, 1833-1855. · Zbl 0701.62029
[60] Dekkers, A. L. M. & deHaan, L. (1989). On the estimation of the extreme‐value index and large quantile estimation. Ann. Stat., 17, 1795-1832. · Zbl 0699.62028
[61] Dell’Aquila, R. & Embrechts, P.(2006). Extremes and robustness: a contradictionFin. Mkts. Portfolio Mgmt., 20, 103-118.
[62] Deme, E., Girard, S. & Guillou, A. (2014). Reduced‐bias estimator of the conditional tail expectation of heavy‐tailed distributions. In Mathematical Statistics and Limit Theorems. Ed. D.Mason (ed.). Springer.
[63] Diebolt, J., El‐Aroui, M. A., Garrido, M. & Girard, S. (2005). Quasi‐conjugate Bayes estimates for GPD parameters and application to heavy tails modelling. Extremes, 8, 57-78. · Zbl 1091.62009
[64] Diebolt, J., Gardes, L., Girard, S. & Guillou, A. (2008a). Bias‐reduced estimators of the Weibull tail‐coefficient. TEST, 17, 311-331. · Zbl 1196.62052
[65] Diebolt, J., Gardes, L., Girard, S. & Guillou, A. (2008b). Bias‐reduced extreme quantiles estimators of Weibull tail‐distributions. J. Stat. Plann. Inference, 138, 1389-1401. · Zbl 1250.62024
[66] Diebolt, J., Guillou, A. (2005). Asymptotic behaviour of regular estimators. REVSTAT, 3(1), 19-44. · Zbl 1135.62330
[67] Diebolt, J., Guillou, A., Naveau, P. & Ribereau, P. (2008c). Improving probability‐weighted moment methods for the generalized extreme value distribution. REVSTAT, 6(1), 33-50. · Zbl 1153.62043
[68] Diebolt, J., Guillou, A. & Rached, I. (2007). Approximation of the distribution of excesses through a generalized probability‐weighted moments method. J. Stat. Plann. Inference, 137, 841-857. · Zbl 1107.60027
[69] Dierckx, G., Goegebeur, Y. & Guillou, A. (2013). An asymptotically unbiased minimum density power divergence estimator for the Pareto‐tail index. J. Multivariate Anal., 121, 70-86. · Zbl 1328.62201
[70] Dietrich, D., deHaan, L. & Hüsler, J. (2002). Testing extreme value conditions. Extremes, 5, 71-85. · Zbl 1035.60050
[71] Dietrich, D. & Hüsler, J. (1996). Minimum distance estimators in extreme value distributions. Comm. Stat. Theory Methods, 25, 695-703. · Zbl 0875.62104
[72] Dijk, V. & deHaan, L. (1992). On the estimation of the exceedance probability of a high level. In Order Statistics and Nonparametrics: Theory and Applications, Eds. P.K.Sen (ed.), I.A.Salama (ed.), pp. 79-92, Amsterdam:Elsevier.
[73] Dombry, C. (2013). Maximum likelihood estimators for the extreme value index based on the block maxima method. arXiv:1301.5611.
[74] Draisma, G, deHaan, L., Peng, L. & Pereira, T. T. (1999). A bootstrap‐based method to achieve optimality in estimating the extreme value index. Extremes, 2(4), 367-404. · Zbl 0972.62014
[75] Drees, H., Ferreira, A. & deHaan, L. (2004). On maximum likelihood estimation of the extreme value index. Ann. Appl. Probab., 14, 1179-1201. · Zbl 1102.62051
[76] Drees, H., deHaan, L. & Li, D. (2006). Approximations to the tail empirical distribution function with application to testing extreme value conditions. J. Stat. Plann. Inference, 136, 3498-3538. · Zbl 1093.62052
[77] Drees, H, deHaan, L. & Resnick, S. (2000). How to make a Hill plot. Ann. Stat., 28, 254-274. · Zbl 1106.62333
[78] Drees, H., Kaufmann, E. (1998). Selecting the optimal sample fraction in univariate extreme value estimation. Stochastic Process. Appl., 75, 149-172. · Zbl 0926.62013
[79] Drees, H. & Rootzén, H. (2010). Limit theorems for empirical processes of cluster functionals. Ann. Stat., 38, 2145-2186. · Zbl 1210.62051
[80] Dupuis, D. J. (1998). Exceedances over high thresholds: a guide to threshold selection. Extremes, 1(3), 251-261. · Zbl 0921.62030
[81] Dupuis, D. J. & Field, C. A. (1998). A comparison of confidence intervals for generalized extreme‐value distributions. J. Stat. Comput. Simul., 61, 341-360. · Zbl 0962.62024
[82] Dwass, M. (1964). Extremal processes. Ann. Math. Stat., 35, 1718-1725. · Zbl 0171.38801
[83] Einmahl, J. H. J., Fils‐Villetard, A. & Guillou, A. (2008). Statistics of extremes under random censoring. Bernoulli, 14(1), 207-227. · Zbl 1155.62036
[84] Einmahl, J., Magnus, J. R. (2008). Records in athletics through extreme‐value theory. J. Am. Stat. Assoc., 103, 1382-1391. · Zbl 1286.62047
[85] Einmahl, J. & Smeets, S. G. W. R. (2011). Ultimate 100‐m world records through extreme‐value theory. Stat. Neerl., 65(1), 32-42. · Zbl 07881863
[86] Embrechts, P., Klüppelberg, C. & Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance. Berlin, Heidelberg:Springer. · Zbl 0873.62116
[87] Engeland, K., Hisdal, H. & Frigessi, A. (2004). Practical extreme value modelling of hydrological floods and droughts: a case study. Extremes, 7(1), 5-30. · Zbl 1091.62132
[88] Engelund, S. & Rackwitz, R. (1992). On predictive distribution functions for the three asymptotic extreme value distributions. Struct. Saf., 11, 255-258.
[89] Falk, M. (1995a). On testing the extreme value index via the POT‐method. Ann. Stat., 23, 2013-2035. · Zbl 0856.62027
[90] Falk, M. (1995b). LAN of extreme order statistics. Ann. Inst. Stat. Math., 47, 693-717. · Zbl 0843.62019
[91] Falk, M., Guillou, A., Toulemonde, G. (2008). A LAN based Neyman smooth test for the generalized Pareto distribution. J. Stat. Plann. Inference, 138, 2867-2886. · Zbl 1140.62016
[92] Falk, M., Hüsler, J., Reiss, R. D. (1994). Laws of Small Numbers: Extremes and Rare Events 1st ed. Basel: Birkhäuser. 2nd ed., 2004; 3rd ed., 2011. · Zbl 0817.60057
[93] Ferreira, A. (2002). Optimal asymptotic estimation of small exceedance probabilities. J. Stat. Plann. Inference, 104, 83-102. · Zbl 0988.62029
[94] Ferreira, M., Gomes, M. I. & Leiva, V. (2012). On an extreme value version of the Birnbaum-Saunders distribution. REVSTAT, 10(2), 181-210. · Zbl 1297.60006
[95] Ferreira, A. & deHaan, L. (2013). On the block maxima method in extreme value theory. arxiv.org/pdf/1310.3222.
[96] Ferreira, A., deHaan, L. & Peng, L. (2003). On optimizing the estimation of high quantiles of a probability distribution. Statistics, 37(5), 401-434. · Zbl 1210.62052
[97] Feuerverger, A. & Hall, P. (1999). Estimating a tail exponent by modelling departure from a Pareto distribution. Ann. Stat., 27, 760-781. · Zbl 0942.62059
[98] Fisher, R. A. & Tippett, L. H. C. (1928). Limiting forms of the frequency of the largest or smallest member of a sample. Math. Proc. Cambridge Philos. Soc., 24, 180-190. · JFM 54.0560.05
[99] Fraga Alves, M. I. (1992). The influence of central observations on discrimination among multivariate extremal models. Theory Probab. Appl., 37, 334-337. · Zbl 0796.62049
[100] Fraga Alves, M. I. (1999). Asymptotic distribution of Gumbel statistic in a semi‐parametric approach. Port. Math., 56(3), 282-298. · Zbl 0962.62049
[101] Fraga Alves, M. I. (2001). A location invariant Hill‐type estimator. Extremes, 4,, (3), 199-217. · Zbl 1053.62063
[102] Fraga Alves, M. I. & Gomes, M. I. (1996). Statistical choice of extreme value domains of attraction—a comparative analysis. Comm. Stat. Theory Methods, 25(4), 789-811. · Zbl 0875.62197
[103] Fraga Alves, M. I., Gomes, M. I & deHaan, L. (2003a). A new class of semi‐parametric estimators of the second order parameter. Port. Math., 60(2), 193-213. · Zbl 1042.62050
[104] Fraga Alves, M. I., Gomes, M. I, deHaan, L. & Neves, C. (2009). Mixed moment estimator and location invariant alternatives. Extremes, 12, 149-185. · Zbl 1223.62075
[105] Fraga Alves, M. I., deHaan, L. & Lin, T. (2003b). Estimation of the parameter controlling the speed of convergence in extreme value theory. Math. Methods Stat., 12, 155-176.
[106] Fraga Alves, M. I., deHaan, L. & Lin, T. (2006). Third order extended regular variation. Publ. Inst. Math. (Beograd), 80(94), 109-120. · Zbl 1164.26304
[107] Fraga Alves, M. I., Neves, C. (2013. Estimation of the finite right endpoint in the Gumbel domain. Stat. Sinica,. DOI: 10.5705/ss.2013.183. · Zbl 1480.62084
[108] Fréchet, M. (1927). Sur la loi de probabilité de l’écart maximum. Ann. Soc. Polon. Math., 6, 93-116. · JFM 54.0562.06
[109] Frigessi, A., Haug, O. & Rue, H. (2002). A dynamic mixture model for unsupervised tail estimation without threshold selection. Extremes, 5(3), 219-235. · Zbl 1039.62042
[110] Galambos, J.. (1978). The Asymptotic Theory of Extreme Order Statistics 1st ed. New York: Wiley. 2nd ed., 1987, Krieger: Malabar, FL. · Zbl 0381.62039
[111] Galambos, J. (1982). A statistical test for extreme value distributions. In Non‐parametric Statistical Inference, Eds. B.V.Gnedenko (ed.), M.L.Puri (ed.), & I.Vincze (ed.), 221-230, Amsterdam: North‐Holland. · Zbl 0511.62044
[112] Galambos, J. (1984). Rates of convergence in extreme value theory. In Statistical Extremes and Applications. Eds. J. TiagodeOliveira (ed.), 347-352, Dordrecht: D. Reidel. · Zbl 0551.62010
[113] Girard, S. (2004). A Hill type estimator of the Weibull tail‐coefficient. Comm. Stat. Theory Methods, 33(2), 205-234. · Zbl 1066.62052
[114] Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math., 44, 423-453. · Zbl 0063.01643
[115] Goegebeur, Y., Beirlant, J. & deWet, T. (2010). Generalized kernel estimators for the Weibull‐tail coefficient. Comm. Stat. Theory Methods, 39, 3695-3716. · Zbl 1202.62043
[116] Gomes, M. I. (1978). Some Probabilistic and Statistical Problems in Extreme Value Theory,Ph.D. Thesis, Univ. Sheffield.
[117] Gomes, M. I. (1981). An i‐dimensional limiting distribution function of largest values and its relevance to the statistical theory of extremes. In Statistical Distributions in Scientific Work. Eds. C.Taillie (ed.), G.P.Patil (ed.) & B.A.Baldessari (ed.), 389-410, vol. 6, D. Reidel: Dordrecht. · Zbl 0484.62064
[118] Gomes, M. I. (1982). A note on statistical choice of extremal models. In Actas IX Jorn. Hispano‐Lusas: Salamanca, Vol. II, pp. 653-655.
[119] Gomes, M. I. (1984). Concomitants in a multidimensional extreme model. In Statistical Extremes and Applications, Ed. J. TiagodeOliveira (ed.), 353-364, Dordrecht:D. Reidel.
[120] Gomes, M. I. (1985a). Concomitants and linear estimators in an i‐dimensional extremal model. Trabajos Estadist Investigación Oper., 36, 129-140. · Zbl 0731.62108
[121] Gomes, M. I. (1985b). Statistical theory of extremes—comparison of two approaches. Stat. Decision, 2, 33-37.
[122] Gomes, M. I. (1987). Extreme value theory—statistical choice. In Goodness‐of‐Fit, Ed. P.Revesz (ed.), K.Sarkadi (ed.) & P.K.Sen (ed.), 195-209. Amsterdam:North‐Holland. · Zbl 0621.62043
[123] Gomes, M. I. (1989a). Comparison of extremal models through statistical choice in multidimensional backgrounds. In Extreme Value Theory, Proc. Oberwolfach. Ed. J.Hüsler (ed.) & R.‐D.Reiss (ed.), Lecture Notes in Statistics 51, pp. 191-203. New‐York: Springer‐Verlag. · Zbl 0675.62039
[124] Gomes, M. I. (1989b). Generalized Gumbel and likelihood ratio test statistics in the multivariate GEV model. Comput. Stat. Data Anal., 7, 259-267. · Zbl 0726.62031
[125] Gomes, M. I. (1994). Penultimate behaviour of the extremes. In Extreme Value Theory and Applications. edited by J.Galambos (ed.), J.Lechner (ed.) & E.Simiu (ed.), 403-418, The Netherlands:Kluwer.
[126] Gomes, M. I. & Alpuim, M. T. (1986). Inference in multivariate generalized extreme value models—asymptotic properties of two test statistics. Scand. J. Stat., 13, 291-300. · Zbl 0627.62024
[127] Gomes, M. I., Canto e Castro, L., Fraga Alves, M. I & Pestana, D. (2008a). Statistics of extremes for iid data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions. Extremes, 11(1), 3-34. · Zbl 1164.62014
[128] Gomes, M. I. & Figueiredo, F. (2006). Bias reduction in risk modelling: semi‐parametric quantile estimation. TEST, 15(2), 375-396. · Zbl 1110.62066
[129] Gomes, M. I., Figueiredo, F. & Neves, M. M. (2012). Adaptive estimation of heavy right tails: resampling‐based methods in action. Extremes, 15, 463-489. · Zbl 1329.62230
[130] Gomes, M. I., Fraga Alves, M. I. & Araújo Santos, P. (2008b). PORT Hill and moment estimators for heavy‐tailed models. Comm. Stat. Simul. Comput., 37, 1281-1306. · Zbl 1152.65016
[131] Gomes, M. I. & deHaan, L. (1999). Approximation by penultimate extreme‐value distributions. Extremes, 2(1), 71-85. · Zbl 0947.60019
[132] Gomes, M. I., deHaan, L. & Henriques Rodrigues, L. (2008c). Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses. J. R. Stat. Soc. Ser. B. Stat. Method., 70(1), 31-52. · Zbl 1400.62318
[133] Gomes, M. I., deHaan, L. & Peng, L. (2002). Semi‐parametric estimation of the second order parameter in statistics of extremes. Extremes, 5(4), 387-414. · Zbl 1039.62027
[134] Gomes, M. I., Hall, A. & Miranda, C. (2008d). Subsampling techniques and the Jackknife methodology in the estimation of the extremal index. Comput. Stat. Data Anal., 52(4), 2022-2041. · Zbl 1452.62336
[135] Gomes, M. I., Henriques‐Rodrigues, L., Fraga Alves, M. I. & Manjunath, B. G. (2013). Adaptive PORT‐MVRB estimation: an empirical comparison of two heuristic algorithms. J. Stat. Comput. Simul., 83(6), 1129-1144. · Zbl 1431.62212
[136] Gomes, M. I., Henriques‐Rodrigues, L. & Miranda, C. (2011). Reduced‐bias location‐invariant extreme value index estimation: a simulation study. Comm. Stat. Simul. Comput., 40(3), 424-447. · Zbl 1217.62040
[137] Gomes, M. I., Henriques Rodrigues, L., Vandewalle, B. & Viseu, C. (2008e). A heuristic adaptive choice of the threshold for bias‐corrected Hill estimators. J. Stat. Comput. Simul., 78(2), 133-150. · Zbl 1136.62346
[138] Gomes, M. I., Martins, M. J. & Neves, M. (2000). Alternatives to a semi‐parametric estimator of parameters of rare events: the Jackknife methodology. Extremes, 3, 207-229. · Zbl 0979.62038
[139] Gomes, M. I., Martins, M. J. & Neves, M. M. (2007a). Improving second order reduced bias extreme value index estimation. REVSTAT, 5(2), 177-207. · Zbl 1513.62089
[140] Gomes, M. I. & vanMontfort, M. A. J. (1986). Exponentiality versus Generalized Pareto, quick tests. In III International Conference on Statistical Climatology: Extended Abstracts, Osterreichische Gesellschaft fur Meteorologie, Ed. K.Cehak (ed.), 185-195,Vienna, Austria.
[141] Gomes, M. I. & Neves, M. M. (2011). Estimation of the extreme value index for randomly censored data. Biometrical Lett., 48(1), 1-22.
[142] Gomes, M. I. & Oliveira, O. (2001). The bootstrap methodology in statistics of extremes—choice of the optimal sample fraction. Extremes, 4(4), 331-358. · Zbl 1023.62048
[143] Gomes, M. I., Pestana, D. (2007). A sturdy reduced‐bias extreme quantile (VaR) estimator. J. Am. Stat. Assoc., 102(477), 280-292. · Zbl 1284.62300
[144] Gomes, M. I., Reiss, R. ‐D. & Thomas, M. (2007b). Reduced‐bias estimation, Chapter 6. In Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields. 3rd ed., Ed. R.‐D.Reiss (ed.) & M.Thomas (ed.), pp. 189-204, Basel‐Boston‐Berlin: Birkhäuser Verlag. · Zbl 1122.62036
[145] Greenwood, J. A., Landwehr, J. M., Matalas, N. C. & Wallis, J. R. (1979). Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form. Water Resour. Res., 15, 1049-1054.
[146] Grimshaw, S. (1993). Computing maximum likelihood estimates for the generalized Pareto distribution. Technometrics, 35(2), 185-191. · Zbl 0775.62054
[147] Grinevigh, I. V. (1992a). Max‐semistable laws corresponding to linear and power normalizations. Theory Probab. Appl., 37, 720-721.
[148] Grinevigh, I. V. (1992b). Domains of attraction of max‐semistable laws under linear and power normalizations. Theory Probab. Appl., 38, 640-650.
[149] Groeneboom, P., Lopuha, H. P & deWolf, P. P. (2003). Kernel‐type estimators for the extreme value index. Ann. Stat., 31, 1956-1995. · Zbl 1047.62046
[150] Guillou, A. & Hall, P. (2001). A diagnostic for selecting the threshold in extreme‐value analysis. J. R. Stat. Soc. Ser. B. Stat. Method., 63, 293-305. · Zbl 0979.62039
[151] Gumbel, E. J. (1958). Statistics of Extremes. New York: Columbia Univ. Press. · Zbl 0086.34401
[152] Gumbel, E. J. (1965). A quick estimation of the parameters in Fréchet’s distribution. Rev. Inst. Internat. Stat., 33, 349-363. · Zbl 0144.41504
[153] deHaan, L. (1970). OnRegular Variation and Its Application to the Weak Convergence of Sample Extremes. Mathematical Centre Tract 32,Amsterdam. Dordrecht: D. Reidel. · Zbl 0226.60039
[154] deHaan, L. (1984). Slow variation and characterization of domains of attraction. In Statistical Extremes and Applications. Ed. J. TiagodeOliveira (ed.), 31-48, Dordrecht, Holland: D. Reidel. · Zbl 0566.60023
[155] deHaan, L. & Ferreira, A. (2006). Extreme Value Theory: An Introduction. New York: Springer Science+Business Media LLC. · Zbl 1101.62002
[156] deHaan, L. & Rootzén, H. (1993). On the estimation of high quantiles. J. Stat. Plann. Inference, 35, 1-13. · Zbl 0770.62026
[157] deHaan, L. & Stadtmüller, U.(1996). Generalized regular variation of second order. J. Austral. Math. Soc. Ser. A, 61, 381-395. · Zbl 0878.26002
[158] Hall, P. (1982). On estimating the endpoint of a distribution. Ann. Stat., 10, 556-568. · Zbl 0489.62029
[159] Hall, P. (1990). Using the bootstrap to estimate mean‐squared error and select smoothing parameter in non‐parametric problems. J. Multivariate Anal., 32, 177-203. · Zbl 0722.62030
[160] Hall, P. & Welsh, A. W. (1985). Adaptive estimates of parameters of regular variation. Ann. Stat., 13, 331-341. · Zbl 0605.62033
[161] Hasofer, A. M. & Wang, Z. (1992). A test for extreme value domain of attraction. J. Amer. Stat. Assoc., 87, 171-177.
[162] He, X. & Fung, W. K. (1999). Method of medians for lifetime data with Weibull models. Stat. Med., 18, 1993-2009.
[163] Henriques‐Rodrigues, L., Gomes, M. I. (2009). High quantile estimation and the PORT methodology. REVSTAT, 7(3), 245-264. · Zbl 1297.62118
[164] Henriques‐Rodrigues, L., Gomes, M. I., Fraga Alves, M. I. & Neves, C. (2013). PORT estimation of a shape second‐order parameter. REVSTAT, 13(3.
[165] Henriques‐Rodrigues, L., Gomes, M. I. & Pestana, D. (2011). Statistics of extremes in athletics. REVSTAT, 9(2), 127-153. · Zbl 1297.62255
[166] Hill, B. (1975). A simple general approach to inference about the tail of a distribution. Ann. Stat., 3, 1163-1174. · Zbl 0323.62033
[167] Hosking, J. R. M. (1984). Testing whether the shape parameter is zero in the generalized extreme value distribution. Biometrika, 71, 367-374.
[168] Hosking, J. R. M. (1985). Algorithm AS 215: maximum likelihood estimation of the parameters of the generalized extreme value distribution. J. R. Stat. Soc. Ser. C. Appl. Stat., 34, 301-310.
[169] Hosking, J. R. M. & Wallis, J. R. (1987). Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 29, 339-349. · Zbl 0628.62019
[170] Hosking, J. R. M., Wallis, J. R. & Wood, E. F. (1985). Estimation of the generalized extreme‐value distribution by the method of probability‐weighted moments. Technometrics, 27, 251-261.
[171] Hüsler, J. & Li, D. (2006). On testing extreme value conditions. Extremes, 9, 69-86. · Zbl 1164.62352
[172] Hüsler, J. & Peng, L. (2008). Review of testing issues in extremes: in honor of Professor Laurens de Haan. Extremes, 11(1), 99-111. · Zbl 1164.62016
[173] Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteorolog. Soc., 81, 158-171.
[174] Johansson, J. (2003). Estimating the mean of heavy‐tailed distributions. Extremes, 6, 91-109. · Zbl 1063.62073
[175] Juárez, S. F., Schucany, W. R. (2004). Robust and efficient estimation for the generalized Pareto distribution. Extremes, 7(3), 237-251. · Zbl 1091.62017
[176] Jurečková, J. & Picek, J. (2001). A class of tests on the tail index. Extremes, 4,, (2), 165-183. · Zbl 1008.62045
[177] Kaufmann, E. (2000). Penultimate approximations in extreme value theory. Extremes, 3(1), 39-55. · Zbl 0973.60054
[178] Kinnison, R. (1989). Correlation coefficient goodness‐of‐fit test for the extreme value distribution. Am. Stat., 43, 98-100.
[179] Lamperti, J. (1964). On extreme order statistics. Ann. Math. Stat., 35, 1726-1737. · Zbl 0132.39502
[180] Landwher, J., Matalas, N. & Wallis, J. (1979). Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles. Water Resour. Res., 15, 1055-1064.
[181] Leadbetter, M. R., Lindgren, G., Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. New York ‐ Berlin: Springer‐Verlag. · Zbl 0518.60021
[182] Leadbetter, M. R. & Nandagopalan, S. (1989). On exceedance point processes for stationary sequences under mild oscillation restrictions. In Extreme Value Theory, Ed. , J.Hüsler (ed.) & R.‐D.Reiss (ed.), 69-80, New York: Springer‐Verlag. · Zbl 0677.60040
[183] Li, D. & Peng, L. (2009). Does bias reduction with external estimator of second order parameter work for endpointJ. Stat. Plann. Inference, 139, 1937-1952. · Zbl 1159.62013
[184] Li, D., Peng, L. & Qi, Y. (2011). Empirical likelihood confidence intervals for the endpoint of a distribution function. TEST, 20, 353-366. · Zbl 1274.62346
[185] Li, D., Peng, L. & Yang, J. (2010). Bias reduction for high quantiles. J. Stat. Plann. Inference, 140, 2433-2441. · Zbl 1188.62166
[186] Ling, C., Peng, Z. & Nadarahja, S. (2012). Location invariant Weiss-Hill estimator. Extremes, 15, 197-230. · Zbl 1329.62233
[187] Lingappaiah, G. S. (1984). Bayesian prediction regions for the extreme order statistics. Biometrical J., 26, 49-56. · Zbl 0541.62019
[188] Luceño, A. (2006). Fitting the generalized Pareto distribution to data using maximum goodness‐of‐fit estimators. Comput. Stat. Data Anal., 51, 904-917. · Zbl 1157.62399
[189] Lye, L. M., Hapuarachchi, K. P. & Ryan, S. (1993). Bayes estimation of the extreme‐value reliability function. IEEE Trans. Reliab., 42, 641-644. · Zbl 0797.62093
[190] Macleod, A. J (1989). A remark on the algorithm AS 215: maximum likelihood estimation of the parameters of the generalized extreme value distribution. Appl. Stat., 38, 198-199.
[191] Markovich, N. (2007). Nonparametric Analysis of Univariate Heavy‐tailed Data: Research and Practice. Chichester: Wiley. · Zbl 1156.62027
[192] Marohn, F.Wiley. On testing the exponential and Gumbel distribution. In Extreme Value Theory. Ed. J.Galambos (ed.), J.Lechner (ed.) & E.Simiu (ed.), 159-174. Dordrecht: Kluwer.
[193] Marohn, F (1998a). An adaptive efficient test for Gumbel domain of attraction. Scand. J. Stat., 25, 311-324. · Zbl 0909.62013
[194] Marohn, F. (1998b). Testing the Gumbel hypothesis via the POT‐method. Extremes, 1(2), 191-213. · Zbl 0923.62050
[195] Marohn, F. (2000). Testing extreme value models. Extremes, 3(4), 363-384. · Zbl 1008.62022
[196] Martins, E. S. & Stedinger, J. R. (2000). Generalized maximum‐likelihood generalized extreme‐value quantile estimators for hydrologic data. Water Resour. Res., 36(3), 737-744.
[197] Matthys, G. & Beirlant, J. (2003). Estimating the extreme value index and high quantiles with exponential regression models. Stat. Sinica, 13, 853-880. · Zbl 1028.62038
[198] Matthys, G., Delafosse, M., Guillou, A. & Beirlant, J. (2004). Estimating catastrophic quantile levels for heavy‐tailed distributions. Insurance Math. Econ., 34, 517-537. · Zbl 1188.91237
[199] McNeil, A. J. (1997). Estimating the tails of loss severity distributions using extreme value theory. Astin Bull., 27, 117-137.
[200] vanMontfort, M. A. J. (1970). On testing that the distribution of extremes is of type I when type II is the alternative. J. Hydro., 11, 421-427.
[201] vanMontfort, M. A. J. (1973). Anasymmetric test on the type of distribution of extremes, Technical Report 73‐18, Medelelugen Landbbouwhoge‐School Wageningen.
[202] vanMontfort, M. A. J., Gomes, M. I. (1985). Statistical choice of extremal models for complete and censored data. J. Hydro., 77, 77-87.
[203] vanMontfort, M. A. J. & Otten, A. (1978). On testing a shape parameter in the presence of a location and scale parameter. Math. Operationsforsch. Stat. Ser. Stat., 9, 91-104. · Zbl 0398.62020
[204] vanMontfort, M. A. J. & Witter, J. V. (1985). Testing exponentiality against generalized Pareto distribution. J. Hydro., 78, 305-315.
[205] Nandagopalan, S. (1990). Multivariate Extremes and Estimation of the Extremal Index, Ph.D. Thesis, Univ. North Carolina at Chapel Hill. · Zbl 0881.60050
[206] Neves, C. & Fraga Alves, M. I. (2007). Semi‐parametric approach to the Hasofer‐Wang and Greenwood statistics in extremes. TEST, 16, 297-313. · Zbl 1119.62045
[207] Neves, C. & Fraga Alves, M. I. (2008). Testing extreme value conditions—an overview and recent approaches. REVSTAT, 6(1), 83-100. · Zbl 1153.62327
[208] Neves, C., Picek, J. & Fraga Alves, M. I. (2006). The contribution of the maximum to the sum of excesses for testing max‐domains of attraction. J. Stat. Plann. Inference, 136(4), 1281-1301. · Zbl 1088.62061
[209] Otten, A. & vanMontfort, M. A. J. (1978). The power of two tests on the type of distributions of extremes. J. Hydro., 37, 195-199.
[210] Pancheva, E. (1992). Multivariate max‐semistable distributions. Theory Probab. Appl., 37, 794-795.
[211] Pancheva, E. (2010). Max‐semistability: a survey. ProbStat, 3, 11-24. · Zbl 1186.62026
[212] Peng, L. (1998). Asymptotically unbiased estimators for the extreme‐value index. Stat. Probab. Lett., 38(2), 107-115. · Zbl 1246.62129
[213] Peng, L. (2001). Estimating the mean of a heavy‐tailed distribution. Stat. Probab. Lett., 52, 255-264. · Zbl 0981.62041
[214] Peng, L. & Welsh, A. W. (2001). Robust estimation of the generalized Pareto distribution. Extremes, 4,, (1), 53-65. · Zbl 1008.62024
[215] Pickands, J., III (1975). Statistical inference using extreme order statistics. Ann. Stat., 3, 119-131. · Zbl 0312.62038
[216] Pickands, J.III (1994). Bayes quantile estimation and threshold selection for the generalized Pareto family. In Extreme Value Theory and Applications, Ed, J.Galambos (ed.) & S.Leigh (ed.) & E.Simiu (ed.), 123-138, Amsterdam:Kluwer.
[217] Prescott, P., Walden, A. T. (1980). Maximum likelihood estimation of the parameters of the generalized extreme‐value distribution. Biometrika, 67, 723-724.
[218] Prescott, P. & Walden, A. T. (1983). Maximum likelihood estimation of the parameters of the three‐parameter generalized extreme‐value distribution from censored samples. J. Stat. Comput. Simul., 16, 241-250. · Zbl 0501.62016
[219] Raoult, J. P., Worms, R. (2003). Rate of convergence for the generalized Pareto approximation of the excesses. Adv. Appl. Probab., 35(4), 1007-1027. · Zbl 1044.60041
[220] Reis, P., Canto e Castro, L., Dias, S. & Gomes, M. I. (2013). Penultimate approximations in statistics of extremes and reliability of large coherent systems. Method. Comput. Appl. Probab,. DOI: 10.1007/s11009‐013‐9338‐7. · Zbl 1309.62092
[221] Reiss, R. ‐D., Thomas, M. (1997). Statistical Analysis of Extreme Values, with Application to Insurance, Finance, Hydrology and Other Fields 1st ed., Basel: Birkhäuser Verlag. 2nd ed., 2001; 3rd ed., 2007. · Zbl 0880.62002
[222] Reiss, R. ‐D. & Thomas, M. (1999). A new class of Bayesian estimators in Paretian excess‐of‐loss reinsurance. Astin Bull., 29(2), 339-349. · Zbl 1129.91334
[223] Resnick, S. I. (1987). Extreme Values, Regular Variation and Point Processes. New York: Springer‐Verlag. · Zbl 0633.60001
[224] Resnick, S. I. (1997). Heavy tail modeling and teletraffic data. Ann. Stat., 25(5), 1805-1869. · Zbl 0942.62097
[225] Resnick, S. I. (2007). Heavy‐tail Phenomena: Probabilistic and Statistical Modeling. New York: Springer‐Verlag. · Zbl 1152.62029
[226] Rootzén, H., Tajvidi, N. (1997). Extreme value statistics and wind storm losses: a case study. Scand. Actuar. J., 1, 70-94. · Zbl 0926.62104
[227] Scarrot, C. & McDonald, A. (2012). A review of extreme value threshold estimation and uncertainty quantification. REVSTAT, 10(2), 33-60. · Zbl 1297.62120
[228] Segers, J. & Teugels, J. (2000). Testing the Gumbel hypothesis by Galton’s ratio. Extremes, 3(3), 291-303. · Zbl 0979.62031
[229] Singh, V. P. & Guo, H. (1997). Parameter estimation for 2‐parameter generalized Pareto distribution by POME. Stochastic Hydrol. Hydraulics, 11(2), 211-227. · Zbl 0890.62003
[230] Smith, R. L. (1984). Threshold methods for sample extremes. In Statistical Extremes and Applications. Ed. J.Tiago de Oliveira (ed.), 621-638, Dordrecht: D. Reidel. · Zbl 0574.62090
[231] Smith, R. L. (1985). Maximum likelihood estimation in a class of nonregular cases. Biometrika, 72, 67-90. · Zbl 0583.62026
[232] Smith, R. L. (1986). Extreme value theory based on the r largest annual events. J. Hydro., 86, 27-43.
[233] Smith, R. L. (1987a). Estimating tails of probability distributions. Ann. Stat., 15, 1174-1207. · Zbl 0642.62022
[234] Smith, R. L. (1987b). Approximations in Extreme Value Theory, Preprint. North‐Carolina: Univ. North‐Carolina.
[235] Smith, R. L. (1999). Bayesian and frequentist approaches to parametric predictive inference. In Bayesian Statistics 6. Eds. J.M.Bernardo (ed.), J.O.Berger (ed.), A.P.Dawid (ed.) & A.F.Smith (ed.), 589-612, U.K: Oxford Press. · Zbl 0974.62003
[236] Smith, R. L. & Goodman, D. J. (2000). Bayesian risk analysis. In Extremes and Integrated Risk Management. Eds. P.Embrechts (ed.), 235-251, London: Risk Books.
[237] Smith, R. L. & Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian estimators for the three parameter Weibull distribution. J. R. Stat. Soc. Ser. C. Appl. Stat., 36, 358-369.
[238] deSousa, B. & Michailids, G. (2004). A diagnostic plot for estimating the tail index of a distribution. J. Comput. Graph. Stat., 13(4), 974-995.
[239] Stephens, M. A. (1976). Asymptotic results for goodness‐of‐fit statistics with unknown parameters. Ann. Stat., 4, 357-369. · Zbl 0325.62014
[240] Stephens, M. A. (1977). Goodness‐of‐fit for the extreme value distribution. Biometrika, 64, 583-588. · Zbl 0374.62028
[241] Stephens, M. A. (1986). Tests for the exponential distribution. In Goodness‐of‐Fit Techniques. Eds. R.B.D’Agostinho (ed.), M.A.Stephens (ed.), 421-459, New York: Marcel Dekker.
[242] Stephenson, A. & Tawn, J. (2004). Bayesian inference for extremes: accounting for the three extremal types. Extremes, 7(4), 291-307. · Zbl 1090.62025
[243] Tancredi, A., Anderson, C. & O’Hagan, T. (2006). Accounting for threshold uncertainty in extreme value estimation. Extremes, 9, 87-106. · Zbl 1164.62326
[244] Tawn, J. (1988). An extreme value theory model for dependent observations. J. Hydro., 101, 227-250.
[245] Temido, M. G. & Canto e Castro, L. (2003). Max‐semistable laws in extremes of stationary random sequences. Theory Probab. Appl., 47(2), 365-374. · Zbl 1037.60050
[246] Tiago de Oliveira, J. (1981). Statistical choice of univariate extreme models. In Statistical Distributions in Scientific Work. Eds. C.Taillie (ed.), G.P.Patil (ed.) & B.A.Baldessari (ed.), 367-387, vol. 6, Dordrecht‐Boston: Reidel. · Zbl 0484.62036
[247] Tiago de Oliveira, J. (1984). Univariate extremes: statistical choice. In Statistical Extremes and Application. Ed. J.Tiago de Oliveira (ed.), 91-107, Dordrecht: D. Reidel. · Zbl 0567.62038
[248] Tiago de Oliveira, J., Gomes, M. I. (1984). Two test statistics for choice of univariate extreme models. In Statistical Extremes and Application. Ed. J.Tiago de Oliveira (ed.), 651-668, Dordrecht: D. Reidel. · Zbl 0557.62048
[249] Vandewalle, B., Beirlant, J., Christmann, A. & Hubert, M. (2007). A robust estimator for the tail index of Pareto‐type distributions. Comput. Stat. Data Anal., 51, 6252-6268. · Zbl 1445.62102
[250] Walshaw, D. (2000). Modelling extreme wind speeds in regions prone to hurricanes. J. R. Stat. Soc. Ser. C. Appl. Stat., 49, 51-62. · Zbl 0944.62113
[251] Wang, J. Z. (1995). Selection of the k largest order statistics for the domain of attraction of the Gumbel distribution. J. Am. Stat. Assoc., 90, 1055-1061. · Zbl 0850.62402
[252] Wang, J. Z., Cooke, P. & Li, S. (1996). Determination of domains of attraction based on a sequence of maxima. Austral. J. Stat., 38, 173-181. · Zbl 0884.62051
[253] Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest observations. J. Am. Stat. Assoc., 73, 812-815. · Zbl 0397.62034
[254] Weissman, I. (1984). Statistical estimation in extreme value theory. In Statistical Extremes and Applications. Ed. J.Tiago de Oliveira (ed.), 109-115, Dordrecht: D. Reidel.
[255] deZea Bermudez, P. & Amaral‐Turkman, M. A. (2003). Bayesian approach to parameter estimation of the generalized Pareto distribution. TEST, 12, 259-277. · Zbl 1039.62023
[256] deZea Bermudez, P., Amaral‐Turkman, M. A. & Turkman, K. F. (2001). A predictive approach to tail probability estimation. Extremes, 4(4), 295-314. · Zbl 1023.62031
[257] Zhou, C. (2009). Existence and consistency of the maximum likelihood estimator for the extreme value index. J. Multivariate Anal., 100(4), 794-815. · Zbl 1169.62038
[258] Zhou, C. (2010). The extent of the maximum likelihood estimator for the extreme value index. J. Multivariate Anal., 101(4), 971-983. · Zbl 1279.62081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.