×

Two intercept-and-resend attacks on a bidirectional quantum secure direct communication and its improvement. (English) Zbl 07750046

Summary: Quantum secure direct communication is an important branch of quantum cryptography. One of the main requirements of quantum secure direct communication is to ensure that no secret information can be stolen. Recently, a bidirectional quantum secure direct communication protocol [A. K. Mohapatra and S. Balakrishnan, Quantum Inf. Process. 16, No. 6, Paper No. 147, 11 p. (2017; Zbl 1373.81180)] was proposed. It was believed that the intercept-and-resend attack and information leakage problem can be avoided via this protocol. However, in this paper, we point out that attackers can obtain useful information about the secret messages by constructing two intercept-and-resend attacks on the above protocol. Attackers can obtain Alice’s secret message exclusive OR Bob’s secret message by the first attack and both secret messages by the second attack. To resist the two constructed attacks, we design an improved bidirectional quantum secure direct communication protocol. Furthermore, we show that the designed protocol can resist the two constructed attacks and its efficiency has increased. It is interesting that the designed protocol can publish Alice’s result states, i.e., Bob’s initial states, without affecting its security. The designed protocol can prevent Alice (Bob) from obtaining Bob’s (Alice’s) secret message before Alice (Bob) sends her (his) secret message. This work can notice researchers to avoid similar security problems in constructing quantum cryptography protocols.

MSC:

81P94 Quantum cryptography (quantum-theoretic aspects)
94A60 Cryptography

Citations:

Zbl 1373.81180
Full Text: DOI

References:

[1] Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175-179. IEEE, Bangalore India (1984) · Zbl 1306.81030
[2] Wootters, WK; Zurek, WH, The no-cloning theorem, Phys. Today, 62, 2, 76-77 (2009) · doi:10.1063/1.3086114
[3] Gerry, C.; Knight, P., Quantum superpositions and schrödinger cat states in quantum optics, Am. J. Phys., 65, 10, 964-974 (1997) · doi:10.1119/1.18698
[4] Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H., Quantum cryptography, Rev. Mod. Phys., 74, 1, 145 (2002) · Zbl 1371.81006 · doi:10.1103/RevModPhys.74.145
[5] Ekert, AK, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett., 67, 6, 661-663 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[6] Li, J.; Li, N.; Li, L-L; Wang, T., One step quantum key distribution based on EPR entanglement, Sci. Rep., 6, 1, 1-10 (2016)
[7] Yin, J.; Cao, Y.; Li, Y-H; Ren, J-G; Liao, S-K; Zhang, L.; Cai, W-Q; Liu, W-Y; Li, B.; Dai, H., Satellite-to-ground entanglement-based quantum key distribution, Phys. Rev. Lett., 119, 20 (2017) · doi:10.1103/PhysRevLett.119.200501
[8] Jouguet, P.; Kunz-Jacques, S.; Leverrier, A.; Grangier, P.; Diamanti, E., Experimental demonstration of long-distance continuous-variable quantum key distribution, Nat. Photon., 7, 5, 378-381 (2013) · doi:10.1038/nphoton.2013.63
[9] Lo, H-K; Curty, M.; Qi, B., Measurement-device-independent quantum key distribution, Phys. Rev. Lett., 108, 13 (2012) · doi:10.1103/PhysRevLett.108.130503
[10] Bera, S.; Gupta, S.; Majumdar, A., Device-independent quantum key distribution using random quantum states, Quantum Inf. Process., 22, 2, 109 (2023) · Zbl 1509.81353 · doi:10.1007/s11128-023-03852-2
[11] Liu, B.; Xia, S.; Xiao, D.; Huang, W.; Xu, B.; Li, Y., Decoy-state method for quantum-key-distribution-based quantum private query, Sci. China Phys. Mech. Astron., 65, 4 (2022) · doi:10.1007/s11433-021-1843-7
[12] She, L-G; Zhang, C-M, Reference-frame-independent quantum key distribution with modified coherent states, Quantum Inf. Process., 21, 5, 161 (2022) · Zbl 1508.81736 · doi:10.1007/s11128-022-03502-z
[13] Nie, Y-F; Zhang, C-M, Afterpulse analysis for reference-frame-independent quantum key distribution, Quantum Inf. Process., 21, 9, 340 (2022) · Zbl 1508.81729 · doi:10.1007/s11128-022-03688-2
[14] Deng, F-G; Long, GL; Liu, X-S, Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block, Phys. Rev. A, 68, 4 (2003) · doi:10.1103/PhysRevA.68.042317
[15] Long, G-L; Deng, F-G; Wang, C.; Li, X-H; Wen, K.; Wang, W-Y, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China, 2, 3, 251-272 (2007) · doi:10.1007/s11467-007-0050-3
[16] Sun, Z.; Song, L.; Huang, Q.; Yin, L.; Long, G.; Lu, J.; Hanzo, L., Toward practical quantum secure direct communication: a quantum-memory-free protocol and code design, IEEE Trans. Commun., 68, 9, 5778-5792 (2020) · doi:10.1109/TCOMM.2020.3006201
[17] Liu, X.; Li, Z.; Luo, D.; Huang, C.; Ma, D.; Geng, M.; Wang, J.; Zhang, Z.; Wei, K., Practical decoy-state quantum secure direct communication, Sci. China Phys. Mech. Astron., 64, 12 (2021) · doi:10.1007/s11433-021-1775-4
[18] Long, G-L; Zhang, H., Drastic increase of channel capacity in quantum secure direct communication using masking, Sci. Bull., 66, 13, 1267-1269 (2021) · doi:10.1016/j.scib.2021.04.016
[19] Zhou, L.; Sheng, Y-B; Long, G-L, Device-independent quantum secure direct communication against collective attacks, Sci. Bull., 65, 1, 12-20 (2020) · doi:10.1016/j.scib.2019.10.025
[20] Zhou, L.; Xu, B-W; Zhong, W.; Sheng, Y-B, Device-independent quantum secure direct communication with single-photon sources, Phys. Rev. Appl., 19, 1 (2023) · doi:10.1103/PhysRevApplied.19.014036
[21] Sheng, Y-B; Zhou, L.; Long, G-L, One-step quantum secure direct communication, Sci. Bull., 67, 4, 367-374 (2022) · doi:10.1016/j.scib.2021.11.002
[22] Zhou, L.; Sheng, Y-B, One-step device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron., 65, 5 (2022) · doi:10.1007/s11433-021-1863-9
[23] Zhou, Z.; Sheng, Y.; Niu, P.; Yin, L.; Long, G.; Hanzo, L., Measurement-device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron., 63, 3 (2020) · doi:10.1007/s11433-019-1450-8
[24] Ying, J-W; Zhou, L.; Zhong, W.; Sheng, Y-B, Measurement-device-independent one-step quantum secure direct communication, Chin. Phys. B, 31, 12 (2022) · doi:10.1088/1674-1056/ac8f37
[25] Cao, Z.; Wang, L.; Liang, K.; Chai, G.; Peng, J., Continuous-variable quantum secure direct communication based on gaussian mapping, Phys. Rev. Appl., 16, 2 (2021) · doi:10.1103/PhysRevApplied.16.024012
[26] Zhang, H.; Sun, Z.; Qi, R.; Yin, L.; Long, G-L; Lu, J., Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states, Light Sci. Appl., 11, 1, 83 (2022) · doi:10.1038/s41377-022-00769-w
[27] Wu, J.; Lin, Z.; Yin, L.; Long, G-L, Security of quantum secure direct communication based on Wyner’s wiretap channel theory, Quantum Eng., 1, 4, 26 (2019) · doi:10.1002/que2.26
[28] Ye, Z-D; Pan, D.; Sun, Z.; Du, C-G; Yin, L-G; Long, G-L, Generic security analysis framework for quantum secure direct communication, Front. Phys., 16, 1-9 (2021) · doi:10.1007/s11467-020-1025-x
[29] Wu, J.; Long, G-L; Hayashi, M., Quantum secure direct communication with private dense coding using a general preshared quantum state, Phys. Rev. Appl., 17, 6 (2022) · doi:10.1103/PhysRevApplied.17.064011
[30] Lee, H.; Lim, J.; Yang, H., Quantum direct communication with authentication, Phys. Rev. A, 73, 4 (2006) · doi:10.1103/PhysRevA.73.042305
[31] Yen, C.-A., Horng, S.-J., Goan, H.-S., Kao, T.-W., Chou, Y.-H.: Quantum direct communication with mutual authentication. arXiv Preprint arXiv:0903.3444 (2009)
[32] Pan, D.; Lin, Z.; Wu, J.; Zhang, H.; Sun, Z.; Ruan, D.; Yin, L.; Long, GL, Experimental free-space quantum secure direct communication and its security analysis, Photon. Res., 8, 9, 1522-1531 (2020) · doi:10.1364/PRJ.388790
[33] Qi, Z.; Li, Y.; Huang, Y.; Feng, J.; Zheng, Y.; Chen, X., A 15-user quantum secure direct communication network, Light Sci. Appl., 10, 1, 183 (2021) · doi:10.1038/s41377-021-00634-2
[34] Liu, X.; Luo, D.; Lin, G.; Chen, Z.; Huang, C.; Li, S.; Zhang, C.; Zhang, Z.; Wei, K., Fiber-based quantum secure direct communication without active polarization compensation, Sci. China Phys. Mech. Astron., 65, 12 (2022) · doi:10.1007/s11433-022-1976-0
[35] Long, G-L; Pan, D.; Sheng, Y-B; Xue, Q.; Lu, J.; Hanzo, L., An evolutionary pathway for the quantum internet relying on secure classical repeaters, IEEE Netw., 36, 3, 82-88 (2022) · doi:10.1109/MNET.108.2100375
[36] Nguyen, BA, Quantum dialogue, Phys. Lett. A, 328, 1, 6-10 (2004) · Zbl 1134.81338 · doi:10.1016/j.physleta.2004.06.009
[37] Tan, Y-G; Cai, Q-Y, Classical correlation in quantum dialogue, Int. J. Quant. Inf., 6, 2, 325-329 (2008) · doi:10.1142/S021974990800344X
[38] Gao, F.; Guo, F.; Wen, Q.; Zhu, F., Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication, Sci. China Ser. G, 51, 5, 559-566 (2008) · doi:10.1007/s11433-008-0065-y
[39] Shi, G-F; Xi, X-Q; Hu, M-L; Yue, R-H, Quantum secure dialogue by using single photons, Opt. Commun., 283, 9, 1984-1986 (2010) · doi:10.1016/j.optcom.2010.01.007
[40] Man, Z-X; Xia, Y-J, Controlled bidirectional quantum direct communication by using a GHZ state, Chin. Phys. Lett., 23, 7, 1680-1682 (2006) · doi:10.1088/0256-307X/23/7/007
[41] Gao, T.; Li, Y-F; Xi, W-Z, Controlled quantum teleportation and secure direct communication, Chin. Phys., 14, 5, 893 (2005) · doi:10.1088/1009-1963/14/5/006
[42] Ye, T-Y; Jiang, L-Z, Improvement of controlled bidirectional quantum direct communication using a GHZ state, Chin. Phys. Lett., 30, 4 (2013) · doi:10.1088/0256-307X/30/4/040305
[43] Wang, J.; Zhang, Q.; Tang, C-J, Multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state, Opt. Commun., 266, 2, 732-737 (2006) · doi:10.1016/j.optcom.2006.05.035
[44] Dong, L.; Xiu, X-M; Gao, Y-J; Chi, F., A controlled quantum dialogue protocol in the network using entanglement swapping, Opt. Commun., 281, 24, 6135-6138 (2008) · doi:10.1016/j.optcom.2008.09.030
[45] Kao, S-H; Hwang, T., Controlled quantum dialogue using cluster states, Quantum Inf. Process., 16, 5, 1-13 (2017) · Zbl 1373.81174 · doi:10.1007/s11128-017-1597-8
[46] Pan, H-M, Controlled bidirectional quantum secure direct communication with six-qubit entangled states, Int. J. Theor. Phys., 60, 8, 2943-2950 (2021) · Zbl 1528.81115 · doi:10.1007/s10773-021-04866-1
[47] Liu, B-X; Liang, X-Q, Novel controlled quantum dialogue protocols without information leakage, Int. J. Theor. Phys., 61, 3, 1-17 (2022) · Zbl 1486.81078 · doi:10.1007/s10773-022-05023-y
[48] Chang, C-H; Luo, Y-P; Yang, C-W; Hwang, T., Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement, Quantum Inf. Process., 14, 9, 3515-3522 (2015) · Zbl 1325.81062 · doi:10.1007/s11128-015-1050-9
[49] Mohapatra, AK; Balakrishnan, S., Controller-independent bidirectional quantum direct communication, Quantum Inf. Process., 16, 6, 1-11 (2017) · Zbl 1373.81180 · doi:10.1007/s11128-017-1598-7
[50] Deng, F-G; Li, X-H; Li, C-Y; Zhou, P.; Zhou, H-Y, Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs, Phys. Lett. A, 359, 5, 359-365 (2006) · Zbl 1236.81050 · doi:10.1016/j.physleta.2006.06.054
[51] Shannon, CE, Communication theory of secrecy systems, Bell Syst. Tech. J., 28, 4, 656-715 (1949) · Zbl 1200.94005 · doi:10.1002/j.1538-7305.1949.tb00928.x
[52] Bussieres, F.; Sangouard, N.; Afzelius, M.; De Riedmatten, H.; Simon, C.; Tittel, W., Prospective applications of optical quantum memories, J. Mod. Opt., 60, 18, 1519-1537 (2013) · Zbl 1356.81245 · doi:10.1080/09500340.2013.856482
[53] Zhang, W.; Ding, D-S; Sheng, Y-B; Zhou, L.; Shi, B-S; Guo, G-C, Quantum secure direct communication with quantum memory, Phys. Rev. Lett., 118, 22 (2017) · doi:10.1103/PhysRevLett.118.220501
[54] Cabello, A., Quantum key distribution in the Holevo limit, Phys. Rev. Lett., 85, 26, 5635 (2000) · doi:10.1103/PhysRevLett.85.5635
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.