×

Analysis of an LDG-FEM for a two-dimensional singularly perturbed convection-reaction-diffusion problem with interior and boundary layers. (English) Zbl 07710408

Summary: This article is concerned with a two-dimensional singularly perturbed convection-reaction-diffusion interface problem. In the considered problem, the convection and reaction coefficients and the source term have discontinuities along interface lines, which are parallel to the \(x\)- and \(y\)-axes. The coefficient of the highest-order term is a small positive parameter denoted by \(\varepsilon\). Due to discontinuities in the coefficients and the source term, interior and boundary layers appear in the solution when \(\varepsilon\) approaches zero. A Local Discontinuous Galerkin method is constructed on an appropriate Shishkin mesh. The test functions in the Local Discontinuous Galerkin method are piecewise polynomials that lie in the space \(\mathcal{Q}_r\) of piecewise polynomials of degree at most \(r\) in each variable, where \(r\) is a positive integer. We established that the error in the computed solution converges at the rate of \(\mathcal{O}((N^{-1}\ln N)^{r+\frac{1}{2}})\) in an energy-norm. Numerical results are given to support the theoretical results.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35K57 Reaction-diffusion equations
35B25 Singular perturbations in context of PDEs
Full Text: DOI

References:

[1] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2001/02) · Zbl 1008.65080
[2] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 2, 267-279 (1997) · Zbl 0871.76040
[3] Cai, Z.; Ye, X.; Zhang, S., Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations, SIAM J. Numer. Anal., 49, 5, 1761-1787 (2011) · Zbl 1232.65142
[4] Castillo, P., A review of the local discontinuous Galerkin (LDG) method applied to elliptic problems, Appl. Numer. Math., 56, 10-11, 1307-1313 (2006) · Zbl 1100.65100
[5] Castillo, P.; Cockburn, B.; Perugia, I.; Schötzau, D., An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal., 38, 5, 1676-1706 (2000) · Zbl 0987.65111
[6] Castillo, P.; Cockburn, B.; Schötzau, D.; Schwab, C., Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comput., 71, 238, 455-478 (2002) · Zbl 0997.65111
[7] Celiker, F.; Cockburn, B., Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension, Math. Comput., 76, 257, 67-96 (2007) · Zbl 1109.65078
[8] Cheng, Y., On the local discontinuous Galerkin method for singularly perturbed problem with two parameters, J. Comput. Appl. Math., 392, 22 (2021) · Zbl 1467.65073
[9] Cheng, Y.; Meng, X.; Zhang, Q., Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations, Math. Comput., 86, 305, 1233-1267 (2017) · Zbl 1359.65196
[10] Cheng, Y.; Yan, L.; Wang, X.; Liu, Y., Optimal maximum-norm estimate of the LDG method for singularly perturbed convection-diffusion problem, Appl. Math. Lett., 128, 11 (2022) · Zbl 1492.65214
[11] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 6, 2440-2463 (1998) · Zbl 0927.65118
[12] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261 (2001) · Zbl 1065.76135
[13] Cockburn, B.; Kanschat, G.; Perugia, I.; Schötzau, D., Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., 39, 1, 264-285 (2001) · Zbl 1041.65080
[14] Guzmán, J., Local and pointwise error estimates of the local discontinuous Galerkin method applied to the Stokes problem, Math. Comput., 77, 263, 1293-1322 (2008) · Zbl 1285.76017
[15] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Eng., 191, 47-48, 5537-5552 (2002) · Zbl 1035.65125
[16] Houston, P.; Schwab, C.; Süli, E., Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39, 6, 2133-2163 (2002) · Zbl 1015.65067
[17] Massjung, R., An unfitted discontinuous Galerkin method applied to elliptic interface problems, SIAM J. Numer. Anal., 50, 6, 3134-3162 (2012) · Zbl 1262.65178
[18] Miller, J. J.H.; O’Riordan, E.; Shishkin, G. I.; Wang, S., A parameter-uniform Schwarz method for a singularly perturbed reaction-diffusion problem with an interior layer, Appl. Numer. Math., 35, 4, 323-337 (2000) · Zbl 0967.65086
[19] Rao, S. C.S.; Chaturvedi, A. K., Parameter-uniform numerical method for a two-dimensional singularly perturbed convection-reaction-diffusion problem with interior and boundary layers, Math. Comput. Simul., 187, 656-686 (2021) · Zbl 1540.65459
[20] Rao, S. C.S.; Chawla, S.; Chaturvedi, A. K., Numerical analysis for a class of coupled system of singularly perturbed time-dependent convection-diffusion equations with a discontinuous source term, Numer. Methods Partial Differ. Equ., 38, 1437-1467 (2022) · Zbl 1533.65128
[21] Rao, S. C.S.; Srivastava, V.; Chaturvedi, A. K., Global uniform convergence of a numerical method for a weakly coupled system of singularly perturbed convection-diffusion equations, (Differential Equations and Applications. Differential Equations and Applications, Springer Proc. Math. Stat., vol. 368 (2021), Springer: Springer Singapore), 17-28 · Zbl 1506.65111
[22] Reed, W. H.; Hill, T. R., Triangular mesh methods for the neutron transport equation (1973), Los Alamos Scientific Lab.: Los Alamos Scientific Lab. N. Mex. (USA), Tech. Report LA-UR-73-479
[23] Roos, H.-G.; Zarin, H., A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on Shishkin meshes, Numer. Methods Partial Differ. Equ., 23, 6, 1560-1576 (2007) · Zbl 1145.65100
[24] Roos, H.-G.; Stynes, M.; Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential EquationsConvection-Diffusion-Reaction and Flow Problems, Springer Series in Computational Mathematics, vol. 24 (2008), Springer-Verlag: Springer-Verlag Berlin · Zbl 1155.65087
[25] Stynes, M.; Stynes, D., Convection-Diffusion ProblemsAn Introduction to Their Analysis and Numerical Solution, Graduate Studies in Mathematics, vol. 196 (2018), American Mathematical Society, Atlantic Association for Research in the Mathematical Sciences (AARMS): American Mathematical Society, Atlantic Association for Research in the Mathematical Sciences (AARMS) Providence, RI, Halifax, NS · Zbl 1422.65005
[26] Stynes, M.; Tobiska, L., Using rectangular \(Q_p\) elements in the SDFEM for a convection-diffusion problem with a boundary layer, Appl. Numer. Math., 58, 12, 1789-1802 (2008) · Zbl 1154.65083
[27] Xenophontos, C.; Franz, S.; Ludwig, L., Finite element approximation of convection-diffusion problems using an exponentially graded mesh, Comput. Math. Appl., 72, 6, 1532-1540 (2016) · Zbl 1361.65091
[28] Xu, Y.; Shu, C.-W., Local discontinuous Galerkin methods for high-order time-dependent partial differential equations, Commun. Comput. Phys., 7, 1, 1-46 (2010) · Zbl 1364.65205
[29] Zarin, H.; Roos, H.-G., Interior penalty discontinuous approximations of convection-diffusion problems with parabolic layers, Numer. Math., 100, 4, 735-759 (2005) · Zbl 1100.65105
[30] Zhang, M.; Shu, C.-W., An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations, Math. Models Methods Appl. Sci., 13, 395-413 (2003) · Zbl 1050.65094
[31] Zhang, Z., Finite element superconvergence approximation for one-dimensional singularly perturbed problems, Numer. Methods Partial Differ. Equ., 18, 3, 374-395 (2002) · Zbl 1002.65088
[32] Zhao, D.; Zhang, Q., Local discontinuous Galerkin methods with generalized alternating numerical fluxes for two-dimensional linear Sobolev equation, J. Sci. Comput., 78, 3, 1660-1690 (2019) · Zbl 1502.65155
[33] Zhu, H.; Lin, R., \( L^\infty\) estimation of the LDG method for 1-D singularly perturbed convection-diffusion problems, Discrete Contin. Dyn. Syst., Ser. B, 18, 5, 1493-1505 (2013) · Zbl 1285.65053
[34] Cheng, Y.; Mei, Y.; Roos, H. G., The local discontinuous Galerkin method on layer-adapted meshes for time-dependent singularly perturbed convection-diffusion problems, Comput. Math. Appl., 117, 245-256 (2022) · Zbl 1524.65520
[35] Zhu, H.; Zhang, Z., Uniform convergence of the LDG method for a singularly perturbed problem with the exponential boundary layer, Math. Comput., 83, 286, 635-663 (2014) · Zbl 1282.65159
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.