×

Numerical modeling of wave propagation phenomena in thermo-poroelastic media via discontinuous Galerkin methods. (English) Zbl 07705916

Summary: We present and analyze a high-order discontinuous Galerkin method for the space discretization of the wave propagation model in thermo-poroelastic media. The proposed scheme supports general polytopal grids. Stability analysis and hp-version error estimates in suitable energy norms are derived for the semi-discrete problem. The fully-discrete scheme is then obtained based on employing an implicit Newmark-\(\beta\) time integration scheme. A wide set of numerical simulations is reported, both for the verification of the theoretical estimates and for examples of physical interest. A comparison with the results of the poroelastic model is provided too, highlighting the differences between the predictive capabilities of the two models.

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Sxx Flows in porous media; filtration; seepage

Software:

PolyMesher

References:

[1] Antonietti, P. F.; Mazzieri, I., High-order discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes, Comput. Methods Appl. Mech. Eng., 342, Article 08 pp. (2018) · Zbl 1440.65129
[2] Antonietti, P. F.; Giani, S.; Houston, P., hp-version composite discontinuous Galerkin methods for elliptic problems on complicated domains, SIAM J. Sci. Comput., 35, 3, A1417-A1439 (2013) · Zbl 1284.65163
[3] Antonietti, P. F.; Facciolà, C.; Russo, A.; Verani, M., Discontinuous Galerkin approximation of flows in fractured porous media on polytopic grids, SIAM J. Sci. Comput., 41, 1, A109-A138 (2019) · Zbl 1407.65255
[4] Antonietti, P. F.; Botti, M.; Mazzieri, I.; Nati Poltri, S., A high-order discontinuous Galerkin method for the poro-elasto-acoustic problem on polygonal and polyhedral grids, SIAM J. Sci. Comput., 44, 1, B1-B28 (2021) · Zbl 1486.65160
[5] Antonietti, P. F.; Mascotto, L.; Verani, M.; Zonca, S., Stability analysis of polytopic discontinuous Galerkin approximations of the Stokes problem with applications to fluid-structure interaction problems, J. Sci. Comput., 90, 1, 23 (Nov 2021) · Zbl 1478.65079
[6] Antonietti, P. F.; Botti, M.; Mazzieri, I., On mathematical and numerical modelling of multiphysics wave propagation with polytopal discontinuous Galerkin methods: a review, Vietnam J. Math. (Jul 2022) · Zbl 1532.65074
[7] Antonietti, P. F.; Bonetti, S.; Botti, M., Discontinuous Galerkin approximation of the fully coupled thermo-poroelastic problem, SIAM J. Sci. Comput., 45, 2, A621-A645 (2023) · Zbl 1529.65052
[8] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 4, 742-760 (1982) · Zbl 0482.65060
[9] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[10] Bassi, F.; Botti, L.; Colombo, A.; Di Pietro, D.; Tesini, P., On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, J. Comput. Phys., 231, 1, 45-65 (2012) · Zbl 1457.65178
[11] Biot, M. A., Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27, 3, 240-253 (1956) · Zbl 0071.41204
[12] Biot, M. A., Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33, 4, 1482-1498 (1962) · Zbl 0104.21401
[13] Botti, L.; Botti, M.; Di Pietro, D. A., An abstract analysis framework for monolithic discretisations of poroelasticity with application to hybrid high-order methods, Comput. Math. Appl., 91, 150-175 (2021), Robust and Reliable Finite Element Methods in Poromechanics · Zbl 1524.65517
[14] Botti, M.; Pietro, D. A.D.; Sochala, P., A hybrid high-order discretization method for nonlinear poroelasticity, Comput. Methods Appl. Math., 20, 2, 227-249 (2020) · Zbl 1437.76027
[15] Brun, M. K.; Ahmed, E.; Nordbotten, J. M.; Radu, F. A., Well-posedness of the fully coupled quasi-static thermo-poroelastic equations with nonlinear convective transport, J. Math. Anal. Appl., 471, 1, 239-266 (2019) · Zbl 1457.74055
[16] Brun, M. K.; Ahmed, E.; Berre, I.; Nordbotten, J. M.; Radu, F. A., Monolithic and splitting solution schemes for fully coupled quasi-static thermo-poroelasticity with nonlinear convective transport, Comput. Math. Appl., 80, 8, 1964-1984 (2020) · Zbl 1451.74204
[17] Cangiani, A.; Georgoulis, E. H.; Houston, P., Hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci., 24, 10, 2009-2041 (2014) · Zbl 1298.65167
[18] Cangiani, A.; Dong, Z.; Georgoulis, E. H., hp-version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes, SIAM J. Sci. Comput., 39, 4, A1251-A1279 (2017) · Zbl 1371.65106
[19] Cangiani, A.; Dong, Z.; Georgoulis, E. H.; Houston, P., hp-Version Discontinuous Galerkin Methods on Polytopic Meshes, Springer Briefs in Mathematics (2017), Springer International Publishing · Zbl 1382.65307
[20] Carcione, J., Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media (2015), Elsevier
[21] Carcione, J. M.; Poletto, F.; Farina, B.; Bellezza, C., 3d seismic modeling in geothermal reservoirs with a distribution of steam patch sizes, permeabilities and saturations, including ductility of the rock frame, Phys. Earth Planet. Inter., 279, 67-78 (2018)
[22] Carcione, J. M.; Cavallini, F.; Wang, E.; Ba, J.; Fu, L.-Y., Physics and simulation of wave propagation in linear thermoporoelastic media, J. Geophys. Res., Solid Earth, 124, 8, 8147-8166 (2019)
[23] Cattaneo, C., Sulla conduzione del calore, Atti Semin. Mat. Fis. Univ. Modena, 3, 13-21 (1948)
[24] Chen, Y.; Ge, Z., Multiphysics finite element method for quasi-static thermo-poroelasticity, J. Sci. Comput., 92, 2, 43 (Jun 2022) · Zbl 1494.74075
[25] Chiavassa, G.; Lombard, B., Wave propagation across acoustic/biot’s media: a finite-difference method, Commun. Comput. Phys., 13, 4, 985-1012 (2013) · Zbl 1373.76042
[26] Coussy, O., Thermoporoelasticity, 71-112 (2003), John Wiley & Sons, Ltd, chapter 4
[27] de la Puente, J.; Dumbser, M.; Käser, M.; Igel, H., Discontinuous Galerkin methods for wave propagation in poroelastic media, Geophysics, 73, 5, T77-T97 (09 2008)
[28] Deresiewicz, H., Plane waves in a thermoelastic solid, J. Acoust. Soc. Am., 29, 2, 204-209 (1957)
[29] Di Pietro, D.; Ern, A., Mathematical Aspects of Discontinuous Galerkin Methods (2012), Springer: Springer Berlin, Heidelberg · Zbl 1231.65209
[30] Ern, A.; Guermond, J., Finite Elements II - Galerkin Approximation, Elliptic and Mixed PDEs (2021), Springer: Springer Cham · Zbl 1476.65002
[31] Ieşan, D.; Quintanilla, R., On a theory of thermoelastic materials with a double porosity structure, J. Therm. Stresses, 37, 9, 1017-1036 (2014)
[32] Kumar, R.; Vohra, R.; Gorla, M. G., Variational principle and plane wave propagation in thermoelastic medium with double porosity under Lord-Shulman theory, J. Solid Mech., 9, 423-433 (2017)
[33] Lord, H.; Shulman, Y., A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15, 5, 299-309 (1967) · Zbl 0156.22702
[34] Matuszyk, P.; Demkowicz, L. F., Solution of coupled poroelastic/acoustic/elastic wave propagation problems using automatic hp-adaptivity, Comput. Methods Appl. Mech. Eng., 281, 54-80 (2014) · Zbl 1423.74905
[35] Morency, C.; Tromp, J., Spectral-element simulations of wave propagation in porous media, Geophys. J. Int., 175, 1, 301-345 (10 2008)
[36] Nield, D. A.; Bejan, A., Convection in Porous Media (2006), Springer: Springer New York · Zbl 1256.76004
[37] Noda, N., Thermal stress problem in a fluid-filled porous circular cylinder, J. Appl. Math. Mech. / Z. Angew. Math. Mech., 70, 12, 543-549 (1990) · Zbl 0735.73007
[38] Poularikas, A., Handbook of Formulas and Tables for Signal Processing (1998), CRC Press LLC
[39] Quarteroni, A., Numerical Models for Differential Problems (2017), Springer: Springer Cham
[40] Santos, J. E.; Carcione, J. M.; Ba, J., Existence and uniqueness of solutions of thermo-poroelasticity, J. Math. Anal. Appl., 499, 1, Article 124907 pp. (2021) · Zbl 1462.35385
[41] Sharma, M. D., Wave propagation in thermoelastic saturated porous medium, J. Earth Syst. Sci., 117, 6, 951-958 (Dec 2008)
[42] Solin, P.; Segeth, K.; Dolezel, I., Higher-Order Finite Element Methods (2003), CRC Press
[43] Souzanchi, M. F.; Cardoso, L.; Cowin, S. C., Tortuosity and the averaging of microvelocity fields in poroelasticity, J. Appl. Mech., 80, 2, Article 020906 pp. (02 2013)
[44] Straughan, B., Heat Waves (2011), Springer: Springer New York · Zbl 1250.80001
[45] Talischi, C.; Paulino, G. H.; Pereira, A.; Menezes, I. F.M., Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidiscip. Optim., 45, 3, 309-328 (Mar 2012) · Zbl 1274.74401
[46] Wheeler, M. F., An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal., 15, 1, 152-161 (1978) · Zbl 0384.65058
[47] Yang, B.; Li, Z.; Zeng, L.; Chen, X., Simulation of thermoelastic wave propagation in 3-D multilayered half-space media, Geophys. J. Int., 232, 2, 1408-1426 (10 2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.