×

Spatiotemporal wildfire modeling through point processes with moderate and extreme marks. (English) Zbl 07656989

Ann. Appl. Stat. 17, No. 1, 560-582 (2023); correction ibid. 18, No. 1, 899-903 (2024).
Summary: Accurate spatiotemporal modeling of conditions leading to moderate and large wildfires provides better understanding of mechanisms driving fire-prone ecosystems and improves risk management. Here, we develop a joint model for the occurrence intensity and the wildfire size distribution, by combining extreme-value theory and point processes within a novel Bayesian hierarchical model, and use it to study daily summer wildfire data for the French Mediterranean basin during 1995–2018. The occurrence component models wildfire ignitions as a spatiotemporal log-Gaussian Cox process. Burnt areas are numerical marks attached to points and are considered as extreme if they exceed a high threshold. The size component is a two-component mixture varying in space and time that jointly models moderate and extreme fires. We capture nonlinear influence of covariates (Fire Weather Index, forest cover) through component-specific smooth functions which may vary with season. We propose estimating shared random effects between model components to reveal and interpret common drivers of different aspects of wildfire activity. This increases parsimony and reduces estimation uncertainty, giving better predictions. Specific stratified subsampling of zero counts is implemented to cope with large observation vectors. We compare and validate models through predictive scores and visual diagnostics. Our methodology provides a holistic approach to explaining and predicting the drivers of wildfire activity and associated uncertainties.

MSC:

62Pxx Applications of statistics

Software:

spatstat; R-INLA; ismev; INLA

References:

[1] BADDELEY, A., BERMAN, M., FISHER, N. I., HARDEGEN, A., MILNE, R. K., SCHUHMACHER, D., SHAH, R. and TURNER, R. (2010). Spatial logistic regression and change-of-support in Poisson point processes. Electron. J. Stat. 4 1151-1201. · Zbl 1329.62253 · doi:10.1214/10-EJS581
[2] BADDELEY, A., COEURJOLLY, J.-F., RUBAK, E. and WAAGEPETERSEN, R. (2014). Logistic regression for spatial Gibbs point processes. Biometrika 101 377-392. · Zbl 1452.62700 · doi:10.1093/biomet/ast060
[3] BADDELEY, A., RUBAK, E. and TURNER, R. (2015). Spatial Point Patterns: Methodology and Applications with R. CRC Press/CRC Press, Boca Raton, FL.
[4] BADDELEY, A. and TURNER, R. (2000). Practical maximum pseudolikelihood for spatial point patterns. Aust. N. Z. J. Stat. 42 283-322. · Zbl 0981.62078 · doi:10.1111/1467-842X.00128
[5] BERMAN, M. and TURNER, T. R. (1992). Approximating point process likelihoods with GLIM. J. R. Stat. Soc. Ser. C. Appl. Stat. 41 31-38. · Zbl 0825.62614
[6] Bolin, D. and Lindgren, F. (2015). Excursion and contour uncertainty regions for latent Gaussian models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 85-106. · Zbl 1414.62332 · doi:10.1111/rssb.12055
[7] BOLIN, D. and WALLIN, J. (2020). Scale dependence: Why the average CRPS often is inappropriate for ranking probabilistic forecasts. ArXiv Preprint. Available at arXiv:1912.05642.
[8] Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78 1-3.
[9] COLES, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer, London. · Zbl 0980.62043 · doi:10.1007/978-1-4471-3675-0
[10] CUI, W. and PERERA, A. H. (2008). What do we know about forest fire size distribution, and why is this knowledge useful for forest management? Int. J. Wildland Fire 17 234-244.
[11] CUMMING, S. (2001). A parametric model of the fire-size distribution. Can. J. For. Res. 31 1297-1303.
[12] DAVISON, A. C. and SMITH, R. L. (1990). Models for exceedances over high thresholds. J. Roy. Statist. Soc. Ser. B 52 393-442. · Zbl 0706.62039
[13] DE ZEA BERMUDEZ, P., MENDES, J., PEREIRA, J. M. C., TURKMAN, K. F. and VASCONCELOS, M. J. P. (2009). Spatial and temporal extremes of wildfire sizes in Portugal (1984-2004). Int. J. Wildland Fire 18 983-991.
[14] EVIN, G., CURT, T. and ECKERT, N. (2018). Has fire policy decreased the return period of the largest wildfire events in France? A Bayesian assessment based on extreme value theory. Nat. Hazards Earth Syst. Sci. 18 2641-2651.
[15] FAWCETT, T. (2006). An introduction to ROC analysis. Pattern Recogn. Lett. 27 861-874.
[16] FUGLSTAD, G.-A., SIMPSON, D., LINDGREN, F. and RUE, H. (2019). Constructing priors that penalize the complexity of Gaussian random fields. J. Amer. Statist. Assoc. 114 445-452. · Zbl 1478.62279 · doi:10.1080/01621459.2017.1415907
[17] GENTON, M. G., BUTRY, D. T., GUMPERTZ, M. L. and PRESTEMON, J. P. (2006). Spatio-temporal analysis of wildfire ignitions in the St Johns River water management district, Florida. Int. J. Wildland Fire 15 87-97.
[18] Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. J. Amer. Statist. Assoc. 47 663-685. · Zbl 0047.38301
[19] ILLIAN, J. B., SØRBYE, S. H. and RUE, H. (2012). A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA). Ann. Appl. Stat. 6 1499-1530. · Zbl 1257.62093 · doi:10.1214/11-AOAS530
[20] JONES, M. W., SMITH, A., BETTS, R., CANADELL, J. G., PRENTICE, I. C. and LE QUÉRÉ, C. (2020). ScienceBrief review: Climate change increases the risk of wildfires. In Critical Issues in Climate Change Science (C. Le Quéré, P. Liss and P. Forster, eds.).
[21] JOSEPH, M. B., ROSSI, M. W., MIETKIEWICZ, N. P., MAHOOD, A. L., CATTAU, M. E., ST. DENIS, L. A., NAGY, R. C., IGLESIAS, V., ABATZOGLOU, J. T. et al. (2019). Spatiotemporal prediction of wildfire size extremes with Bayesian finite sample maxima. Ecol. Appl. 29 e01898.
[22] KOH, J., PIMONT, F., DUPUY, J.-L and OPITZ, T. (2023). Supplement to “Spatiotemporal wildfire modeling through point processes with moderate and extreme marks.” https://doi.org/10.1214/22-AOAS1642SUPP
[23] KRAINSKI, E. T., GÓMEZ-RUBIO, V., BAKKA, H., LENZI, A., CASTRO-CAMILO, D., SIMPSON, D., LINDGREN, F. and RUE, H. (2018). Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA. CRC Press/CRC, Boca Raton.
[24] LINDGREN, F. and RUE, H. (2015). Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63.
[25] Lindgren, F., Rue, H. and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 423-498. · Zbl 1274.62360 · doi:10.1111/j.1467-9868.2011.00777.x
[26] MENDES, J. M., DE ZEA BERMUDEZ, P. C., PEREIRA, J., TURKMAN, K. F. and VASCONCELOS, M. J. P. (2010). Spatial extremes of wildfire sizes: Bayesian hierarchical models for extremes. Environ. Ecol. Stat. 17 1-28. · doi:10.1007/s10651-008-0099-3
[27] MORITZ, M. A. (1997). Analyzing extreme disturbance events: Fire in los padres national forest. Ecol. Appl. 7 1252-1262.
[28] NORTHROP, P. J. and COLEMAN, C. L. (2014). Improved threshold diagnostic plots for extreme value analyses. Extremes 17 289-303. · Zbl 1308.62104 · doi:10.1007/s10687-014-0183-z
[29] OPITZ, T. (2017). Latent Gaussian modeling and INLA: A review with focus on space-time applications. J. SFdS 158 62-85. · Zbl 1378.62095
[30] OPITZ, T., BAKKA, H., HUSER, R. and LOMBARDO, L. (2022). High-resolution Bayesian mapping of landslide hazard with unobserved trigger event. Ann. Appl. Stat. 16 1653-1675. · Zbl 1498.62289 · doi:10.1214/21-AOAS1561
[31] OPITZ, T., BONNEU, F. and GABRIEL, E. (2020). Point-process based Bayesian modeling of space-time structures of forest fire occurrences in Mediterranean France. Spat. Stat. 40 100429. · doi:10.1016/j.spasta.2020.100429
[32] Opitz, T., Huser, R., Bakka, H. and Rue, H. (2018). INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles. Extremes 21 441-462. · Zbl 1407.62167 · doi:10.1007/s10687-018-0324-x
[33] PENG, R. D., SCHOENBERG, F. P. and WOODS, J. A. (2005). A space-time conditional intensity model for evaluating a wildfire hazard index. J. Amer. Statist. Assoc. 100 26-35. · Zbl 1117.62411 · doi:10.1198/016214504000001763
[34] PEREIRA, J. M. C. and TURKMAN, K. F. (2019). Statistical models of vegetation fires: Spatial and temporal patterns. In Handbook of Environmental and Ecological Statistics. Chapman & Hall/CRC Handb. Mod. Stat. Methods 401-420. CRC Press, Boca Raton, FL.
[35] PIMONT, F., FARGEON, H., OPITZ, T., RUFFAULT, J., BARBERO, R., MARTIN-STPAUL, N., RIGOLOT, E. I., RIVIÈRE, M. and DUPUY, J.-L. (2021). Prediction of regional wildfire activity in the probabilistic Bayesian framework of firelihood. Ecol. Appl. e02316.
[36] PREISLER, H. K., BRILLINGER, D. R., BURGAN, R. E. and BENOIT, J. (2004). Probability based models for estimation of wildfire risk. Int. J. Wildland Fire 13 133-142.
[37] RATHBUN, S. L. (2013). Optimal estimation of Poisson intensity with partially observed covariates. Biometrika 100 277-281. · Zbl 1452.62703 · doi:10.1093/biomet/ass069
[38] RATHBUN, S. L., SHIFFMAN, S. and GWALTNEY, C. J. (2007). Modelling the effects of partially observed covariates on Poisson process intensity. Biometrika 94 153-165. · Zbl 1142.62391 · doi:10.1093/biomet/asm009
[39] RÍOS-PENA, L., KNEIB, T., CADARSO-SUÁREZ, C., KLEIN, N. and MAREY-PÉREZ, M. (2018). Studying the occurrence and burnt area of wildfires using zero-one-inflated structured additive beta regression. Environ. Model. Softw. 110 107-118.
[40] Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 319-392. · Zbl 1248.62156 · doi:10.1111/j.1467-9868.2008.00700.x
[41] RUE, H., RIEBLER, A., SØRBYE, S. H., ILLIAN, J. B., SIMPSON, D. P. and LINDGREN, F. K. (2017). Bayesian computing with INLA: A review. Annu. Rev. Stat. Appl. 4 395-421.
[42] RUFFAULT, J., MARTIN-STPAUL, N., PIMONT, F. and DUPUY, J.-L. (2018). How well do meteorological drought indices predict live fuel moisture content (LFMC)? An assessment for wildfire research and operations in Mediterranean ecosystems. Agric. For. Meteorol. 262 391-401.
[43] SCHOENBERG, F. P., PENG, R. and WOODS, J. (2003). On the distribution of wildfire sizes. Environmetrics 14 583-592.
[44] SERRA, L., JUAN, P., VARGA, D., MATEU, J. and SAEZ, M. (2013). Spatial pattern modelling of wildfires in Catalonia, Spain 2004-2008. Environ. Model. Softw. 40 235-244.
[45] SERRA, L., SAEZ, M., JUAN, P., VARGA, D. and MATEU, J. (2014). A spatio-temporal Poisson hurdle point process to model wildfires. Stoch. Environ. Res. Risk Assess. 28 1671-1684.
[46] SIMPSON, D., RUE, H., RIEBLER, A., MARTINS, T. G. and SØRBYE, S. H. (2017b). Penalising model component complexity: A principled, practical approach to constructing priors. Statist. Sci. 32 1-28. · Zbl 1442.62060 · doi:10.1214/16-STS576
[47] STEWART, S. I., RADELOFF, V. C., HAMMER, R. B. and HAWBAKER, T. J. (2007). Defining the wildland-urban interface. J. For. 105 201-207.
[48] TAYLOR, B. M. and DIGGLE, P. J. (2014). INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes. J. Stat. Comput. Simul. 84 2266-2284. · Zbl 1453.62214 · doi:10.1080/00949655.2013.788653
[49] TIERNEY, L. and KADANE, J. B. (1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc. 81 82-86. · Zbl 0587.62067
[50] TOKDAR, S. T. and KASS, R. E. (2010). Importance sampling: A review. Wiley Interdiscip. Rev.: Comput. Stat. 2 54-60.
[51] TONINI, M., PEREIRA, M. G., PARENTE, J. and OROZCO, C. V. (2017). Evolution of forest fires in Portugal: From spatio-temporal point events to smoothed density maps. Nat. Hazards 85 1489-1510.
[52] TURKMAN, K. F., TURKMAN, M. A. A. and PEREIRA, J. M. (2010). Asymptotic models and inference for extremes of spatio-temporal data. Extremes 13 375-397. · Zbl 1226.60083 · doi:10.1007/s10687-009-0092-8
[53] VAN NIEKERK, J., BAKKA, H., RUE, H. and SCHENK, L. (2019). New frontiers in Bayesian modeling using the INLA package in R. ArXiv Preprint. Available at arXiv:1907.10426.
[54] VAN WAGNER, C. E. (1977). Conditions for the start and spread of crown fire. Can. J. For. Res. 7 23-34.
[55] WANG, X., WOTTON, B. M., CANTIN, A. S., PARISIEN, M.-A., ANDERSON, K., MOORE, B. and FLANNIGAN, M. D. (2017). cffdrs: An R package for the Canadian forest fire danger rating system. Ecol. Process. 6 5.
[56] Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11 3571-3594. · Zbl 1242.62024
[57] WOOLFORD, D. G., MARTELL, D. L., MCFAYDEN, C. B., EVENS, J., STACEY, A., WOTTON, B. M. and BOYCHUK, D. (2021). The development and implementation of a human-caused wildland fire occurrence prediction system for the province of Ontario, Canada. Can. J. For. Res. 51 303-325.
[58] XI, D. D. Z., TAYLOR, S. W., WOOLFORD, D. G. and DEAN, C. B. (2019). Statistical models of key components of wildfire risk. Annu. Rev. Stat. Appl. 6 197-222. · doi:10.1146/annurev-statistics-031017-100450
[59] XU, H. and SCHOENBERG, F. P. (2011). Point process modeling of wildfire hazard in Los Angeles County, California. Ann. Appl. Stat. 5 684-704 · Zbl 1223.62168 · doi:10.1214/10-AOAS401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.