×

Bias versus non-convexity in compressed sensing. (English) Zbl 07557138

Summary: Cardinality and rank functions are ideal ways of regularizing under-determined linear systems, but optimization of the resulting formulations is made difficult since both these penalties are non-convex and discontinuous. The most common remedy is to instead use the \(\ell^1\)- and nuclear norms. While these are convex and can therefore be reliably optimized, they suffer from a shrinking bias that degrades the solution quality in the presence of noise. This well-known drawback has given rise to a fauna of non-convex alternatives, which usually features better global minima at the price of maybe getting stuck in undesired local minima. We focus in particular penalties based on the quadratic envelope, which have been shown to have global minima which even coincide with the “oracle solution,” i.e., there is no bias at all. So, which one do we choose, convex with a definite bias, or non-convex with no bias but less predictability? In this article, we develop a framework which allows us to interpolate between these alternatives; that is, we construct sparsity inducing penalties where the degree of non-convexity/bias can be chosen according to the specifics of the particular problem.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
65K15 Numerical methods for variational inequalities and related problems
90C26 Nonconvex programming, global optimization
62H12 Estimation in multivariate analysis
62J12 Generalized linear models (logistic models)

References:

[1] Attouch, H.; Bolte, J.; Svaiter, BF, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods, Math. Program., 137, 1-2, 91-129 (2013) · Zbl 1260.49048 · doi:10.1007/s10107-011-0484-9
[2] Blanchard, JD; Cartis, C.; Tanner, J., Compressed sensing: how sharp is the restricted isometry property?, SIAM Rev., 53, 1, 105-125 (2011) · Zbl 1214.41008 · doi:10.1137/090748160
[3] Blumensath, T.; Davies, ME, Iterative thresholding for sparse approximations, J. Fourier Anal. Appl., 14, 5-6, 629-654 (2008) · Zbl 1175.94060 · doi:10.1007/s00041-008-9035-z
[4] Bredies, K.; Lorenz, DA; Reiterer, S., Minimization of non-smooth, non-convex functionals by iterative thresholding, J. Optim. Theory Appl., 165, 1, 78-112 (2015) · Zbl 1321.49048 · doi:10.1007/s10957-014-0614-7
[5] Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3d shape from image streams. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2000)
[6] Breheny, P.; Huang, J., Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection, Ann Appl Stat, 5, 1, 232-253 (2011) · Zbl 1220.62095 · doi:10.1214/10-AOAS388
[7] Candès, EJ; Li, X.; Ma, Y.; Wright, J., Robust principal component analysis?, J. ACM, 58, 3, 11:1-11:37 (2011) · Zbl 1327.62369 · doi:10.1145/1970392.1970395
[8] Candes, EJ; Romberg, JK; Tao, T., Stable signal recovery from incomplete and inaccurate measurements, Commun. Pure Appl. Math., 59, 8, 1207-1223 (2006) · Zbl 1098.94009 · doi:10.1002/cpa.20124
[9] Candes, EJ; Tao, T., Near-optimal signal recovery from random projections: Universal encoding strategies?, IEEE Trans. Inf. Theory, 52, 12, 5406-5425 (2006) · Zbl 1309.94033 · doi:10.1109/TIT.2006.885507
[10] Candes, EJ; Wakin, MB; Boyd, SP, Enhancing sparsity by reweighted \(l^1\) minimization, J. Fourier Anal. Appl., 14, 5-6, 877-905 (2008) · Zbl 1176.94014 · doi:10.1007/s00041-008-9045-x
[11] Carlsson, M.: On convexification/optimization of functionals including an l2-misfit term. arXiv preprint arXiv:1609.09378 (2016)
[12] Carlsson, M., On convex envelopes and regularization of non-convex functionals without moving global minima, J. Optim. Theory Appl., 183, 66-84 (2019) · Zbl 1425.49013 · doi:10.1007/s10957-019-01541-8
[13] Carlsson, M.; Gerosa, D.; Olsson, C., An unbiased approach to compressed sensing, Inverse Prob., 36, 11, 115014 (2020) · Zbl 1458.94080 · doi:10.1088/1361-6420/abbd7f
[14] Carlsson, M., Gerosa, D., Olsson, C.: An un-biased approach to low rank recovery. arXiv preprint arXiv:1909.13363 (2019)
[15] Carlsson, M.; Gerosa, D., On phase retrieval via matrix completion and the estimation of low rank PSD matrices, Inverse Prob., 36, 1, 015006 (2020) · Zbl 1448.65036 · doi:10.1088/1361-6420/ab4e6d
[16] Dai, Y.; Li, H.; He, M., A simple prior-free method for non-rigid structure-from-motion factorization, Int. J. Comput. Vis., 107, 2, 101-122 (2014) · Zbl 1294.68134 · doi:10.1007/s11263-013-0684-2
[17] Donoho, DL; Elad, M., Optimally sparse representation in general (non-orthogonal) dictionaries via \(\ell^1\) minimization, Proc. Natl Acad. Sci. USA, 100, 2197-202 (2002) · Zbl 1064.94011 · doi:10.1073/pnas.0437847100
[18] Fan, J.; Li, R., Variable selection via nonconcave penalized likelihood and its oracle properties, J. Am. Stat. Assoc., 96, 456, 1348-1360 (2001) · Zbl 1073.62547 · doi:10.1198/016214501753382273
[19] Fan, J.; Xue, L.; Zou, H., Strong oracle optimality of folded concave penalized estimation, Ann. Stat., 42, 3, 819-849 (2014) · Zbl 1305.62252
[20] Larsson, V.; Olsson, C., Convex low rank approximation, Int. J. Comput. Vis., 120, 2, 194-214 (2016) · Zbl 1398.68586 · doi:10.1007/s11263-016-0904-7
[21] Loh, P-L; Wainwright, MJ, Regularized m-estimators with nonconvexity: statistical and algorithmic theory for local optima, J. Mach. Learn. Res., 16, 19, 559-616 (2015) · Zbl 1360.62276
[22] Loh, P-L; Wainwright, MJ, Support recovery without incoherence: a case for nonconvex regularization, Ann. Stat., 45, 6, 2455-2482 (2017) · Zbl 1385.62008 · doi:10.1214/16-AOS1530
[23] Mazumder, R.; Friedman, JH; Hastie, T., Sparsenet: coordinate descent with nonconvex penalties, J. Am. Stat. Assoc., 106, 495, 1125-1138 (2011) · Zbl 1229.62091 · doi:10.1198/jasa.2011.tm09738
[24] Olsson, C., Carlsson, M., Andersson, F., Larsson, V.: Non-convex rank/sparsity regularization and local minima. Proc. Int. Conf. Comput. Vis. (2017)
[25] Pan, Z.; Zhang, C., Relaxed sparse eigenvalue conditions for sparse estimation via non-convex regularized regression, Pattern Recogn., 48, 1, 231-243 (2015) · Zbl 06805405 · doi:10.1016/j.patcog.2014.06.018
[26] Recht, B.; Fazel, M.; Parrilo, PA, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52, 3, 471-501 (2010) · Zbl 1198.90321 · doi:10.1137/070697835
[27] Tropp, JA, Just relax: Convex programming methods for identifying sparse signals in noise, IEEE Trans. Inf. Theory, 52, 3, 1030-1051 (2006) · Zbl 1288.94025 · doi:10.1109/TIT.2005.864420
[28] Tropp, J.A.: Convex recovery of a structured signal from independent random linear measurements. In: Sampling Theory: A Renaissance, pp. 67-101 (2015) · Zbl 1358.94034
[29] Wang, Y.; Yin, W.; Zeng, J., Global convergence of admm in nonconvex nonsmooth optimization, J. Sci. Comput., 78, 1, 29-63 (2019) · Zbl 1462.65072 · doi:10.1007/s10915-018-0757-z
[30] Wang, Z.; Liu, H.; Zhang, T., Optimal computational and statistical rates of convergence for sparse nonconvex learning problems, Ann. Stat., 42, 6, 2164-2201 (2014) · Zbl 1302.62066 · doi:10.1214/14-AOS1238
[31] Zhang, C.-H., Zhang, T.: A general theory of concave regularization for high-dimensional sparse estimation problems. Stat. Sci. 576-593 (2012) · Zbl 1331.62353
[32] Zou, H.; Li, R., One-step sparse estimates in nonconcave penalized likelihood models, Ann. Stat., 36, 4, 1509-1533 (2008) · Zbl 1142.62027
[33] Zhang, H.; Yin, W.; Cheng, L., Necessary and sufficient conditions of solution uniqueness in 1-norm minimization, J. Optim. Theory Appl., 164, 109-122 (2014) · Zbl 1308.65102 · doi:10.1007/s10957-014-0581-z
[34] Zhang, C-H, Nearly unbiased variable selection under minimax concave penalty, Ann. Stat., 38, 2, 894-942 (2010) · Zbl 1183.62120 · doi:10.1214/09-AOS729
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.