×

The fixed effects PCA model in a common principal component environment. (English) Zbl 07533627

Summary: This paper explores multivariate data using principal component analysis (PCA). Traditionally, two different approaches to PCA have been considered, an algebraic descriptive one and a probabilistic one. Here, a third type of PCA approach, lying somewhere between the two traditional approaches, called the fixed effects PCA model, is considered. This model includes mainly geometrical, rather than probabilistic assumptions, such as the optimal choice of dimensionality and metric. The model is designed to account for any possible prior information about the noise in the data to yield better estimates. Parameters are estimated by minimizing a least-squares criterion with respect to a specified metric. A suggestion of how the fixed effects PCA estimates can be improved in a common principal component (CPC) environment is made. If the CPC assumption is fulfilled, then the fixed effects PCA model can consider more information by incorporating common principal component analysis (CPCA) theory into the estimation procedure.

MSC:

62-XX Statistics

References:

[1] Besse, P., Pca stability and choice of dimensionality, Statistics & Probability Letters, 13, 5, 405-10 (1992) · Zbl 0743.62046 · doi:10.1016/0167-7152(92)90115-L
[2] Besse, P.; Caussinus, H.; Ferre, L.; Fine, J., Some guidelines for principal component analysis, Compstat, 23-30 (1986), Physica-Verlag HD
[3] Besse, P.; Caussinus, H.; Ferre, L.; Fine, J., Principal components analysis and optimization of graphical displays, Statistics, 19, 2, 301-12 (1988) · Zbl 0643.62046 · doi:10.1080/02331888808802103
[4] Besse, P.; De Falguerolles, A., Computer intensive methods in statistics, Application of resampling methods to the choice of dimension in principal component analysis, 167-76 (1993), Heidelberg: Physica, Heidelberg
[5] Besse, P. C., Models for multivariate data analysis, Compstat, 271-85 (1994), Heidelberg: Physica, Heidelberg
[6] Boente, G.; Orellana, L., Statistics in genetics and in the environmental sciences, A robust approach to common principal components, 117-45 (2001), Basel: Birkhäuser, Basel
[7] Boente, G.; Pires, A. M.; Rodrigues, I. M., Influence functions and outlier detection under the common principal components model: A robust approach, Biometrika, 89, 4, 861-75 (2002) · Zbl 1036.62050 · doi:10.1093/biomet/89.4.861
[8] Boente, G.; Pires, A. M.; Rodrigues, I. M., General projection-pursuit estimators for the common principal components model: Influence functions and Monte Carlo study, Journal of Multivariate Analysis, 97, 1, 124-47 (2006) · Zbl 1078.62065 · doi:10.1016/j.jmva.2004.11.007
[9] Browne, R. P.; McNicholas, P. D., Orthogonal Stiefel manifold optimization for eigen-decomposed covariance parameter estimation in mixture models, Statistics and Computing, 24, 2, 203-10 (2014) · Zbl 1325.62008 · doi:10.1007/s11222-012-9364-2
[10] Caussinus, H., Models and uses of principal component analysis, Multidimensional Data Analysis, 86, 149-70 (1986)
[11] Caussinus, H., The use of probabilistic models to produce optimal graphical displays of high-dimensional data sets, Journal of the Italian Statistical Society, 1, 1, 51-65 (1992) · Zbl 1417.62012 · doi:10.1007/BF02589049
[12] Caussinus, H.; Ruiz, A., Compstat, Interesting projections of multidimensional data by means of generalized principal component analyses, 121-6 (1990), Physica-Verlag HD
[13] Caussinus, H.; Ruiz-Gazen, A., Exploratory projection pursuit, Data Analysis, 76-92 (2009)
[14] Duras, T., A comparison of two estimation methods for common principal components, Communications in Statistics: Case Studies, Data Analysis and Applications, 5, 4, 366-93 (2019) · doi:10.1080/23737484.2019.1656117
[15] Esposito, V., Deterministic and probabilistic models for symmetrical and non symmetrical principal component analysis, Metron, 56, 139-54 (1998) · Zbl 0962.62055
[16] Fine, J.; Pousse, A., Asympotic study of the multivariate functional model. application to the metric choice in principal component analysis, Statistics, 23, 1, 63-83 (1992) · Zbl 0809.62052 · doi:10.1080/02331889208802352
[17] Flury, B., Common principal components & related multivariate models (1988), John Wiley & Sons, Inc · Zbl 1081.62535
[18] Flury, B.; Riedwyl, H., Multivariate statistics: A practical approach (1988), Chapman & Hall/CRC Texts in Statistical Science. Springer
[19] Flury, B. N., Common principal components in k groups, Journal of the American Statistical Association, 79, 388, 892-8 (1984) · doi:10.2307/2288721
[20] Flury, B. N., Asymptotic theory for common principal component analysis, The Annals of Statistics, 14, 2, 418-30 (1986) · Zbl 0613.62075 · doi:10.1214/aos/1176349930
[21] Flury, B. N.; Gautschi, W., An algorithm for simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly diagonal form, SIAM Journal on Scientific and Statistical Computing, 7, 1, 169-84 (1986) · Zbl 0614.65043 · doi:10.1137/0907013
[22] Hallin, M.; Paindaveine, D.; Verdebout, T., Efficient r-estimation of principal and common principal components, Journal of the American Statistical Association, 109, 507, 1071-83 (2014) · Zbl 1368.62160 · doi:10.1080/01621459.2014.880057
[23] Jolliffe, I., Springer Series in Statistics (2002), Springer · Zbl 1011.62064
[24] Krzanowski, W., Principal component analysis in the presence of group structure, Applied Statistics, 33, 2, 164-8 (1984) · doi:10.2307/2347442
[25] Pepler, P. T., The identification and application of common principal components (2014), Stellenbosch University
[26] Pepler, P. T.; Uys, D.; Nel, D., A comparison of some methods for the selection of a common eigenvector model for the covariance matrices of two groups, Communications in Statistics - Simulation and Computation, 45, 8, 2917-36 (2016) · Zbl 1345.62086 · doi:10.1080/03610918.2014.932801
[27] Sibson, R., Present position and potential developments: Some personal views multivariate analysis, Journal of the Royal Statistical Society: Series A (General), 147, 2, 198-205 (1984) · Zbl 0548.62033 · doi:10.2307/2981676
[28] Trendafilov, N. T., Stepwise estimation of common principal components, Computational Statistics & Data Analysis, 54, 12, 3446-57 (2010) · Zbl 1284.62360 · doi:10.1016/j.csda.2010.03.010
[29] Young, G., Maximum likelihood estimation and factor analysis, Psychometrika, 6, 1, 49-53 (1941) · JFM 67.0489.01 · doi:10.1007/BF02288574
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.