×

Relative hyperbolicity for automorphisms of free products and free groups. (English) Zbl 07513868

Summary: We prove that for a free product \(G\) with free factor system \(\mathcal{G}\), any automorphism \(\phi\) preserving \(\mathcal{G} \), atoroidal (in a sense relative to \(\mathcal{G})\) and none of whose power send two different conjugates of subgroups in \(\mathcal{G}\) on conjugates of themselves by the same element, gives rise to a semidirect product \(G \rtimes_\phi\mathbb{Z}\) that is relatively hyperbolic with respect to suspensions of groups in \(\mathcal{G}\). We recover a theorem of Gautero-Lustig and Ghosh that, if \(G\) is a free group, \(\phi\) an automorphism of \(G\), and \(\mathcal{G}\) is its family of polynomially growing subgroups, then the semidirect product by \(\phi\) is relatively hyperbolic with respect to the suspensions of these subgroups. We apply the first result to the conjugacy problem for certain automorphisms (atoroidal and toral) of free products of abelian groups.

MSC:

20F67 Hyperbolic groups and nonpositively curved groups
20F65 Geometric group theory
20F34 Fundamental groups and their automorphisms (group-theoretic aspects)

References:

[1] Bestvina, M. and Handel, M., Train tracks and automorphisms of free groups, Ann. Math.135 (1992) 1-51. · Zbl 0757.57004
[2] Bestvina, M., Feighn, M. and Handel, M., Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal.7 (1997) 215-244. · Zbl 0884.57002
[3] Bestvina, M., A Bers-like proof of the existence of train tracks for free group automorphisms, Fund. Math.214 (2011) 1-12. · Zbl 1248.20025
[4] Bowditch, B., Relatively hyperbolic groups, Int. J. Algebra Comput.22 (2012) 66. · Zbl 1259.20052
[5] Bridson, M. and Groves, D., The quadratic isoperimetric inequality for mapping tori of free group automorphisms, Mem. Amer. Math. Soc.203 (2010) 955, xii+152 pp. · Zbl 1201.20037
[6] Brinkmann, P., Hyperbolic automorphisms of free groups, Geom. Funct. Anal.10 (2000) 1071-1089. · Zbl 0970.20018
[7] Coulon, R. and Hilion, A., Growth and order of automorphisms of free groups and free Burnside groups, Geom. Topol.21 (2017) 1969-2014. · Zbl 1439.20023
[8] Dahmani, F., Combination of convergence groups, Geom. Topol.7 (2003) 933-963. · Zbl 1037.20042
[9] Dahmani, F. and Groves, D., The isomorphism problem for toral relatively hyperbolic groups, Publ. Math. Inst. Hautes Études Sci.107 (2008) 211-290. · Zbl 1207.20038
[10] Dahmani, F., On suspensions and conjugacy of hyperbolic automorphisms, Trans. Amer. Math. Soc.368 (2016) 5565-5577. · Zbl 1454.20068
[11] Dahmani, F., On suspensions and conjugacy of a few more automorphisms of free groups, Adv. Stud. Pure Math.73 (2017) 135-158. · Zbl 1446.20046
[12] Dahmani, F. and Mj, M., Height, graded relative hyperbolicity and quasiconvexity, J. Éc. Polytech. Math.4 (2017) 515-556. · Zbl 1431.20029
[13] Dahmani, F. and Touikan, N., Deciding isomorphy using Dehn fillings, the splitting case, Invent. Math.215 (2019) 81-169. · Zbl 1503.20010
[14] Druţu, C., Relatively hyperbolic groups: Geometry and quasi-isometric invariance, Comment. Math. Helv.84 (2009) 503-546. · Zbl 1175.20032
[15] Fouxe-Rabinovitch, D. I., Über die Automorphismengruppen der freien Produkte. I, Rec. Math.[Mat. Sbornik] N.S.8 (1940) 265-276(in Russian). · JFM 66.0066.04
[16] Francaviglia, S. and Martino, A., Stretching factors, metrics and train tracks for free products, Illinois J. Math.59 (2015) 859-899. · Zbl 1382.20031
[17] Gaboriau, D. and Levitt, G., The rank of actions on \(R\)-trees, Ann. Sci. École Norm. Sup.28 (1995) 549-570. · Zbl 0835.20038
[18] Gaboriau, D., Jaeger, A., Levitt, G. and Lustig, M., An index for counting fixed points of automorphisms of free groups, Duke Math. J.93 (1998) 425-452. · Zbl 0946.20010
[19] Gautero, F., Geodesics in trees of hyperbolic and relatively hyperbolic spaces, Proc. Edinb. Math. Soc.59 (2016) 701-740. · Zbl 1397.20060
[20] F. Gautero and M. Lustig, The mapping-torus of a free group automorphism is hyperbolic relative to the canonical subgroups of polynomial growth, arXiv:0707.0822. · Zbl 1073.20034
[21] F. Gautero and R. Weidmann, An algebraic combination theorem for graphs of relatively hyperbolic groups. Preprint, 2011.
[22] P. Ghosh, Relative hyperbolicity of free-by-cyclic extensions, arXiv:1802.08570.
[23] Golowin, O. N. and Szadowsky, L. E., Über die Automorphismengruppen der freien Produkte, Rec. Math. Moscou4 (1938) 505-514. · JFM 64.0959.05
[24] Grunwald, F. and Segal, D., Some general algorithms. I: Arithmetic groups, Ann. Math.112 (1980) 531-583. · Zbl 0457.20047
[25] Guirardel, V. and Levitt, G., The outer space of a free product, Proc. Lond. Math. Soc.94 (2007) 695-714. · Zbl 1168.20011
[26] V. Guirardel and G. Levitt, JSJ decompositions of groups, Astrisque No. 395 (2017), vii+165 pp. · Zbl 1391.20002
[27] Guirardel, V. and Levitt, G., Splittings and automorphisms of relatively hyperbolic groups, Groups Geom. Dyn.9 (2015) 599-663. · Zbl 1368.20037
[28] Horbez, C., Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings, J. Topol.9 (2016) 401-450. · Zbl 1361.20029
[29] Horbez, C., The boundary of the outer space of a free product, Israel J. Math.221 (2017) 179-234 · Zbl 1414.20010
[30] C. Horbez, The Tits alternative for the automorphism group of a free product, arXiv:1408.0546. · Zbl 1414.20010
[31] Levitt, G., Counting growth types of automorphisms of free groups, Geom. Funct. Anal.19 (2009) 1119-1146. · Zbl 1196.20038
[32] Mj, M. and Reeves, L., A combination theorem for strong relative hyperbolicity, Geom. Topol.12 (2008) 1777-1798. · Zbl 1192.20027
[33] Osin, D., Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc.179 (2006) 843, vi+100 pp. · Zbl 1093.20025
[34] Sisto, A., Projections and relative hyperbolicity, L’Ens. Math.59 (2013) 165-181. · Zbl 1309.20036
[35] W. P. Thurston, Hyperbolic structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over the circle, arXiv:math/9801045.
[36] Yang, W.-Y., Peripheral structures of relatively hyperbolic groups, J. Reine Angew. Math.689 (2014) 101-135. · Zbl 1298.20053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.