×

Numerical simulation of the two-dimensional heat diffusion in the cold substrate and performance analysis of a thermoelectric air cooler using the lattice Boltzmann method. (English) Zbl 07490141

Summary: This article presents numerical simulations of the two-dimensional temperature distribution in the cold substrate and a performance analysis of a thermoelectric cooler with the Lattice Boltzmann Method. A detailed and concise procedure for the derivation of the source term of Lattice Boltzmann method for a thermal diffusion problem is presented. Numerical simulations are performed using the Bhatnagar-Gross-Krook collision operator with two velocity schemes, namely D2Q4 and D2Q9. The numerical validation is performed by comparisons with an approximate analytical solution and a finite difference method solution. Later, performance parameters of the thermoelectric cooler, based on thermal resistances, are computed from the obtained temperature distribution. The results show that the Lattice Boltzmann Method is capable of simulating the addressed thermal diffusion problem, with very small relative errors (maximum errors of 0.09%) for the temperature distribution. Excellent agreement is observed for the performance parameters, ensuring the robustness of the method. Furthermore, the procedure for the solution of the differential equation can be easily applied to solve other problems.

MSC:

82-XX Statistical mechanics, structure of matter
80-XX Classical thermodynamics, heat transfer

Software:

CoolProp
Full Text: DOI

References:

[1] Chang, Y.; Chang, C.; Ke, M.; Chen, S., Thermoelectric air cooling module for electronic devices, Appl. Therm. Eng., 29, 2731-2737 (2009) · doi:10.1016/j.applthermaleng.2009.01.004
[2] Chen, W.; Liao, C.; Hung, C., A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect, Appl. Energy, 89, 464-473 (2012) · doi:10.1016/j.apenergy.2011.08.022
[3] Oliveira, K.; Cardoso, R.; Hermes, C., Numerical assessment of the thermodynamic performance of thermoelectric cells via two-dimensional modeling, Appl. Energy, 130, 280-288 (2014) · doi:10.1016/j.apenergy.2014.05.050
[4] Shen, L.; Xiao, F.; Chen, H.; Wang, S., Investigation of a novel thermoelectric radiant air-conditioning system, Energ Buildings, 59, 123-132 (2013) · doi:10.1016/j.enbuild.2012.12.041
[5] Manikandan, S.; Kaushik, SC, Transient Thermal Behavior of Annular Thermoeletric Cooling System, J Electron Mater, 46, 2560-2569 (2016) · doi:10.1007/s11664-016-5055-7
[6] Dizaji, HS; Jafarmadar, S.; Khalilarya, S., Novel experiments on COP improvement of thermoeletric air coolers, Energy Convers Manag, 187, 328-338 (2019) · doi:10.1016/j.enconman.2019.03.025
[7] Saber, HH; AlShehri, SA; Maref, W., Performance optimization of cascaded and non-cascaded thermoelectric devices for cooling computer chips, Energy Convers Manag, 191, 174-192 (2019) · doi:10.1016/j.enconman.2019.04.028
[8] Li, Q.; Luo, K.; Kang, Q.; He, Y.; Chen, Q.; Liu, Q., Lattice Boltzmann methods for multiphase flow and phase-change heat transfer, Prog. Energy Combust. Sci, 52, 62-105 (2016) · doi:10.1016/j.pecs.2015.10.001
[9] Mishra, S.; Sahai, H., Analyses of non-Fourier heat conduction in 1D cylindrical and spherical geometry – an application of the Lattice Boltzmann method, Int. J. Heat Mass Transf, 55, 7015-7023 (2012) · doi:10.1016/j.ijheatmasstransfer.2012.07.014
[10] Mishra, S.; Sahai, H., Analysis of non-Fourier conduction and radiation in a cylindrical medium using Lattice Boltzmann method and Finite Volume method, Int. J. Heat Mass Transf, 61, 41-55 (2013) · doi:10.1016/j.ijheatmasstransfer.2013.01.073
[11] Mishra, S.; Sahai, H., Analysis of non-Fourier conduction and volumetric radiation in a concentric spherical shell using Lattice Boltzmann method and finite volume method, Int. J. Heat Mass Transf, 68, 51-66 (2014) · doi:10.1016/j.ijheatmasstransfer.2013.09.014
[12] Mishra, S.; Stephen, A., Combined mode conduction and radiation heat transfer in a spherical geometry with non-Fourier effect, Int. J. Heat Mass Transf, 54, 2975-2989 (2011) · Zbl 1217.80068 · doi:10.1016/j.ijheatmasstransfer.2011.02.053
[13] Mohamad, A., Lattice Boltzmann method for heat diffusion in axis-symmetric geometries, Prog Computat Fluid Dy, 9, 490-494 (2009) · doi:10.1504/PCFD.2009.027766
[14] Wolf-Gladrow, D., A Lattice Boltzmann equation for diffusion, J. Stat. Phys, 79, 1023-1032 (1995) · Zbl 1106.82363 · doi:10.1007/BF02181215
[15] Bhatnagar, PL; Gross, EP; Krook, M., A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems, Phys Rev E, 94, 511-525 (1954) · Zbl 0055.23609 · doi:10.1103/PhysRev.94.511
[16] He, X.; Luo, L., Theory of the Lattice Boltzmann method: From the Boltzmann equation to the Lattice Boltzmann equation, Phys Rev E, 56, 6811-6817 (1997) · doi:10.1103/PhysRevE.56.6811
[17] Higuera, FJ; Jiménez, J., Boltzmann approach to Lattice gas simulations, EPL (Europhysics Letters), 9, 663 (1989) · doi:10.1209/0295-5075/9/7/009
[18] Higuera, FJ; Succi, S.; Benzi, R., Lattice gas dynamics with enhanced collisions, EPL (Europhysics Letters), 9, 345 (1989) · doi:10.1209/0295-5075/9/4/008
[19] Mohamad, A., Lattice Boltzmann method (2011), London Limited: Springer-Verlag, London Limited · Zbl 1247.80003 · doi:10.1007/978-0-85729-455-5
[20] Guo, Z., Shu, C. (2013). Lattice Boltzmann method and its Applications in Engineering. World Scientific Publishing Co. Pte. Ltd. · Zbl 1278.76001
[21] Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, EM, The Lattice Boltzmann method (2017), Switzerland: Springer, Switzerland · Zbl 1362.76001 · doi:10.1007/978-3-319-44649-3
[22] Xuan, X.; Ng, K.; Yap, C.; Chua, H., The maximum temperature difference and polar characteristics of two-stage thermoelectric coolers, Cryogenics, 42, 273-278 (2002) · doi:10.1016/S0011-2275(02)00035-8
[23] Drabkin, I., Yershova, L., Kondratiev, D., Gromov, G. (2009).:The effect of the substrates two-dimensional temperature distribution on the TEC performance, in: in Proc.of 8th European Workshop on Thermoelectrics.
[24] Duan, Z., Muzychk, Y. (2005).: Experimental investigation of heat transfer in impingement air cooled plate fin heat sinks, in: in 38th AIAA Thermophysics Conference.
[25] Lee, S., Van Au, S., Moran, K. (1995).:Constriction/spreading resistance model for electronics packing, in: in ASME/JSME Thermal Engineering Conference, pp. 199-206.
[26] Bell, IH; Wronski, J.; Quoilin, S.; Lemort, V., Pure and pseudo-pure fluid thermophysical property evaluation and the open source thermophysical property library Coolprop, Ind Eng Chem Res, 53, 2498-2508 (2014) · doi:10.1021/ie4033999
[27] Dulnev, GN; Polschikov, BV, Temperature field of a plate with a discrete energy source, J. Eng. Phys, 29, 722-727 (1976)
[28] Guzella, M.; Cabezas-Gómez, L.; Guimarães, L., Numerical computation and analysis of the numerical scheme order of the two-dimensional temperature field of thermoelectric coolers cold substrate, Int. J. of Appl. And Comp. Math, 3, 91-106 (2015) · Zbl 1392.80007
[29] Prasad, KV; Vajravelu, K.; Shivakumara, IS; Vaidya, H.; Basha, NZ, Flow and heat transfer of a casson nanofluid over a nonlinear stretching sheet, J. Nanofluids, 5, 743-752 (2016) · doi:10.1166/jon.2016.1255
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.