×

Higher order constitutive relations and interface conditions for metamaterials with strong spatial dispersion. (English) Zbl 07411323

Summary: To characterize electromagnetic metamaterials at the level of an effective medium, nonlocal constitutive relations are required. In the most general sense, this is feasible using a response function that is convolved with the electric field to express the electric displacement field. Even though this is a neat concept, it bears little practical use. Therefore, frequently the response function is approximated using a polynomial function. While in the past explicit constitutive relations were derived that considered only some lowest order terms, we develop here a general framework that considers an arbitrary high number of terms. It constitutes, therefore, an approximation to the initially considered response function of arbitrary precision. The reason for the previously self-imposed restriction to only a few lowest order terms in the expansion has been the unavailability of the necessary interface conditions with which these nonlocal constitutive relations have to be equipped. Otherwise one could not make practical use of them. Therefore, besides the introduction of such higher order nonlocal constitutive relations, it is at the heart of contribution to derive the necessary interface conditions to pave the way for the practical use of these advanced material laws.

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter

References:

[1] Gratus, J.; McCall, M. W.; Kinsler, P., Electromagnetism, axions, and topology: a first-order operator approach to constitutive responses provides greater freedom, Phys. Rev. A, 101, 4, Article 043804 pp. (2020)
[2] Tretyakov, S. A., A personal view on the origins and developments of the metamaterial concept, J. Opt., 19, 1, Article 013002 pp. (2016)
[3] Jackson, J. D., Classical Electrodynamics (1999), American Journal of Physics · Zbl 0920.00012
[4] Fernandez-Corbaton, I.; Beutel, D.; Rockstuhl, C.; Pausch, A.; Klopper, W., Computation of electromagnetic properties of molecular ensembles, ChemPhysChem, 21, 9, 878 (2020)
[5] Zangwill, A., Physics at Surfaces (1988), Cambridge University Pess
[6] Smith, D. R.; Pendry, J. B., Homogenization of metamaterials by field averaging, J. Opt. Soc. Am. B, 23, 3, 391 (2006)
[7] Caloz, C.; Lai, A.; Itoh, T., The challenge of homogenization in metamaterials, New J. Phys., 7, 1, 167 (2005)
[8] Griffiths, D. J., Introduction to Electrodynamics (1962), Prentice Hall: Prentice Hall New Jersey
[9] Tretyakov, S. A.; Sihvola, A. H.; Sochava, A. A.; Simovski, C. R., Magnetoelectric interactions in bianisotropic media, J. Electromagn. Waves Appl., 12, 4, 481 (1998)
[10] Achouri, K.; Martin, O. J., Surface-wave dispersion retrieval method and synthesis technique for bianisotropic metasurfaces, Phys. Rev. B, 99, 15, Article 155140 pp. (2019)
[11] Menzel, C.; Paul, T.; Rockstuhl, C.; Pertsch, T.; Tretyakov, S.; Lederer, F., Validity of effective material parameters for optical fishnet metamaterials, Phys. Rev. B, 81, 3, Article 035320 pp. (2010)
[12] Shamonina, E.; Solymar, L., Metamaterials: how the subject started, Metamaterials, 1, 1, 12 (2007)
[13] Solymar, L.; Shamonina, E., Waves in Metamaterials (2009), Oxford University Press
[14] Sihvola, A., Metamaterials: a personal view, Radioengineering, 18, 2, 90 (2009)
[15] Gratus, J.; Kinsler, P.; McCall, M. W.; Thompson, R. T., On spacetime transformation optics: temporal and spatial dispersion, New J. Phys., 18, 12, Article 123010 pp. (2016) · Zbl 1456.78003
[16] Guenneau, S.; Ramakrishna, S. A., Negative refractive index, perfect lenses and checkerboards: trapping and imaging effects in folded optical spaces, C. R. Phys., 10, 5, 352 (2009)
[17] Pendry, J. B., Negative refraction makes a perfect lens, Phys. Rev. Lett., 85, 18, 3966 (2000)
[18] Silveirinha, M. G.; Alù, A.; Engheta, N., Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation, Phys. Rev. B, 78, 7, Article 075107 pp. (2008)
[19] Ramakrishna, S. A., Physics of negative refractive index materials, Rep. Prog. Phys., 68, 2, 449 (2005)
[20] Chen, H.; Chan, C. T.; Sheng, P., Transformation optics and metamaterials, Nat. Mater., 9, 5, 387 (2010)
[21] Soric, J. C.; Fleury, R.; Monti, A.; Toscano, A.; Bilotti, F.; Alù, A., Controlling scattering and absorption with metamaterial covers, IEEE Trans. Antennas Propag., 62, 4220 (2014) · Zbl 1371.78073
[22] Stevens, C. J.; Chu, A. S.; Yan, J.; Shamonina, E., Meta-molecular devices, (2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO) (2018))
[23] Gralak, B., Negative index materials: at the frontier of macroscopic electromagnetism, C. R. Phys., 21, 4-5, 343 (2020)
[24] Lomanets, V.; Zhuromskyy, O.; Onishchukov, G.; Sydoruk, O.; Tatartschuk, E.; Shamonina, E.; Leuchs, G.; Peschel, U., Interacting waves on chains of split-ring resonators in the presence of retardation, Appl. Phys. Lett., 97, 1, Article 011108 pp. (2010)
[25] Rockstuhl, C.; Zentgraf, T.; Guo, H.; Liu, N.; Etrich, C.; Loa, T.; Syassen, K.; Kuhl, J.; Lederer, F.; Giessen, H., Resonances of split-ring resonator metamaterials in the near infrared, Appl. Phys. B, 84, 219 (2006)
[26] Rockstuhl, C.; Zentgraf, T.; Meyrath, T. P.; Giessen, H.; Lederer, F., Resonances in complementary metamaterials and nanoapertures, Opt. Express, 16, 3, 2080 (2008)
[27] Bouchitté, G.; Schweizer, B., Homogenization of Maxwell’s equations in a split ring geometry, Multiscale Model. Simul. SIAM, 8, 3, 717 (2010) · Zbl 1228.35028
[28] Felbacq, D.; Bouchitté, G., Homogenization of a set of parallel fibers, Waves Random Media, 7, 2, 245 (1997) · Zbl 0909.35131
[29] Lamacz, A.; Schweizer, B., Effective Maxwell equations in a geometry with flat rings of arbitrary shape, SIAM J. Math. Anal., 45, 3, 1460 (2013) · Zbl 1291.35385
[30] Janaszek, B.; Szczepanski, P., Effect of nonlocality in spatially uniform anisotropic metamaterials, Opt. Express, 28, 10, Article 15447 pp. (2020)
[31] Ciattoni, A.; Carlo, R., Nonlocal homogenization theory in metamaterials: effective electromagnetic spatial dispersion and artificial chirality, Phys. Rev. B, 91, Article 184207 pp. (2015)
[32] Fan, B.; Filonov, D.; Ginzburg, P.; Podolskiy, V. A., Low-frequency nonlocal and hyperbolic modes in corrugated wire metamaterials, Opt. Express, 26, 13, Article 17541 pp. (2018)
[33] Geng, T.; Zhuang, S.; Gao, J.; Yang, X., Nonlocal effective medium approximation for metallic nanorod metamaterials, Phys. Rev. B, 91, 24, Article 245128 pp. (2015)
[34] Silveirinha, M. G., Nonlocal homogenization model for a periodic array of negative rods, Phys. Rev. E, 73, 4, Article 046612 pp. (2006)
[35] Wells, B. M.; Zayats, A. V.; Podolskiy, V. A., Nonlocal optics of plasmonic nanowire metamaterials, Phys. Rev. B, 89, 3, Article 035111 pp. (2014)
[36] Tsukerman, I.; Markel, V. A., A non-asymptotic homogenization theory for periodic electromagnetic structures, Proc. R. Soc. A, Math. Phys. Eng. Sci., 470, 2168, Article 20140245 pp. (2014)
[37] Craster, R. V.; Kaplunov, J.; Pichugin, A. V., High-frequency homogenization for periodic media, Proc. R. Soc. A, Math. Phys. Eng. Sci., 466, 2120, 2341 (2010) · Zbl 1196.35038
[38] Harutyunyan, D.; Milton, G. W.; Craster, R. V., High-frequency homogenization for traveling waves in periodic media, Proc. R. Soc. A, Math. Phys. Eng. Sci., 472, 2191, Article 20160066 pp. (2016) · Zbl 1371.35005
[39] Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C., Beyond local effective material properties for metamaterials, Phys. Rev. B, 97, Article 075439 pp. (2018)
[40] Belov, P. A.; Marqués, R.; Maslovski, S. I.; Nefedov, I. S.; Silveirinha, M.; Simovski, C. R.; Tretyakov, S. A., Strong spatial dispersion in wire media in the very large wavelength limit, Phys. Rev. B, 67, Article 113103 pp. (2003)
[41] Gratus, J.; McCormack, M., Spatially dispersive inhomogeneous electromagnetic media with periodic structure, J. Opt., 17, 2, Article 025105 pp. (2015)
[42] Goffi, F. Z.; Mnasri, K.; Plum, M.; Rockstuhl, C.; Khrabustovskyi, A., Towards more general constitutive relations for metamaterials: a checklist for consistent formulations, Phys. Rev. B, 101, Article 195411 pp. (2020)
[43] Golubkov, A. A.; Makarov, V. A., Boundary conditions for electromagnetic field on the surface of media with weak spatial dispersion, Phys. Usp., 38, 3, 325 (1995)
[44] David, C.; García de Abajo, F. J., Spatial nonlocality in the optical response of metal nanoparticles, J. Phys. Chem. C, 115, 40, Article 19470 pp. (2011)
[45] Alù, A., First-principles homogenization theory for periodic metamaterials, Phys. Rev. B, 84, 7, Article 075153 pp. (2011)
[46] Craster, R. V.; Kaplunov, J.; Nolde, E.; Guenneau, S., Bloch dispersion and high frequency homogenization for separable doubly-periodic structures, Wave Motion, 49, 2, 333 (2012) · Zbl 1360.78015
[47] Gorlach, M. A.; Lapine, M., Boundary conditions for the effective-medium description of subwavelength multilayered structures, Phys. Rev. B, 101, 7, Article 075127 pp. (2020)
[48] Tsukerman, I., Metamaterials and their parameters, (Computational Methods for Nanoscale Applications (2020), Springer: Springer Cham), 561
[49] Silveirinha, M. G.; Baena, J. D.; Jelinek, L.; Marques, R., Nonlocal homogenization of an array of cubic particles made of resonant rings, Metamaterials, 3, 115 (2009)
[50] Simovski, C., Composite Media with Weak Spatial Dispersion (2018), CRC Press
[51] Torrent, D., Strong spatial dispersion in time-modulated dielectric media, Phys. Rev. B, 102, 21, Article 214202 pp. (2020)
[52] Khrabustovskyi, A.; Mnasri, K.; Plum, M.; Stohrer, C.; Rockstuhl, C., Interface conditions for a metamaterial with strong spatial dispersion (2017)
[53] Shevchenko, A.; Kivijärvi, V.; Grahn, P.; Kaivola, M.; Lindfors, K., Bifacial metasurface with quadrupole optical response, Phys. Rev. Appl., 4, 2, Article 024019 pp. (2015)
[54] Smith, D. R.; Schultz, S.; Markoš, P.; Soukoulis, C. M., Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B, 65, 19, Article 195104 pp. (2002)
[55] Li, L., New formulation of the Fourier modal method for crossed surface-relief gratings, J. Opt. Soc. Am. A, 14, 10, 2758 (1997)
[56] Fernandez-Corbaton, I.; Rockstuhl, C.; Ziemke, P.; Gumbsch, P.; Albiez, A.; Schwaiger, R.; Frenzel, T.; Kadic, M.; Wegener, M., New twists of 3D chiral metamaterials, Adv. Mater., 31, 26, Article 1807742 pp. (2019)
[57] Timbrell, D.; You, J. W.; Kivshar, Y. S.; Panoiu, N. C., A comparative analysis of surface and bulk contributions to second-harmonic generation in centro-symmetric nanoparticles, Sci. Rep., 8, 1, 1 (2018)
[58] Belov, P. A.; Tretyakov, S. A.; Viitanen, A. J., Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires, J. Electromagn. Waves Appl., 16, 8, 1153 (2002)
[59] Kinsler, P., An introduction to spatial dispersion: revisiting the basic concepts (2019), arXiv preprint
[60] Samiullah, M., A First Course in Vibrations and Waves (2015), Oxford University Press
[61] Agranovich, V. M.; Ginzburg, V., Crystal Optics with Spatial Dispersion, and Excitons, vol. 42 (2013), Springer Science & Business Media: Springer Science & Business Media Berlin
[62] Maslovski, S. I.; Morgado, T. A.; Silveirinha, M. G.; Kaipa, C. S.; Yakovlev, A. B., Generalized additional boundary conditions for wire media, New J. Phys., 12, 11, Article 113047 pp. (2010) · Zbl 1448.78035
[63] LaBalle, M.; Durach, M., Additional waves and additional boundary conditions in local quartic metamaterials, OSA Contin., 2, 17 (2019)
[64] Alvarez, J. V.; Djafari-Rouhani, B.; Torrent, D., Generalized elastodynamic model for nanophotonics, Phys. Rev. B, 102, 11, Article 115308 pp. (2020)
[65] Caloz, C.; Tatsuo, I., Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (2005), John Wiley & Sons
[66] Lannebère, S.; Morgado, T. A.; Silveirinha, M. G., First principles homogenization of periodic metamaterials and application to wire media (2020), arXiv preprint
[67] Grahn, P.; Shevchenko, A.; Kaivola, M., Interferometric description of optical metamaterials, New J. Phys., 15, 11, Article 113044 pp. (2013)
[68] Shevchenko, A.; Grahn, P.; Kivijärvi, V.; Nyman, M.; Kaivola, M., Spatially dispersive functional optical metamaterials, J. Nanophotonics, 9, 1, Article 093097 pp. (2015)
[69] Friedlander, F. G., Introduction to the Theory of Distributions (1982), Cambridge University Press · Zbl 0499.46020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.