×

Geometric pushforward in Hodge filtered complex cobordism and secondary invariants. (English) Zbl 1541.55004

In previous work, the authors have constructed their (geometric) Hodge filtered complex cobordism theory. This theory provides groups \(MU^n(p)(X)\) for every complex manifold \(X\) and integers \(n\) and \(p\). The present paper aims to present pushforward homomorphisms (for this theory) along proper holomorphic maps \(f : X \rightarrow Y\) between complex manifolds \(X\) and \(Y\). These pushforward maps are homomorphisms of \(MU^*_*(Y)\)-modules \(f_* : MU^n(p)(X) \rightarrow MU^{n+2d}(p+d)(Y)\), where \(d\) is the difference of complex dimensions between \(Y\) and \(X\), and their existence is guaranteed by Theorem 1.1, the main result in this work, appearing in a more extensive form as Theorem 5.12 and stemming from Theorems 4.8 and the projection formula of Theorem 4.14. Theorem 4.8 actually provides pushforwards for proper holomorphic maps that are \(MU_{\mathcal{D}}\)-oriented, a notion studied in Section 3 and appearing as Definition 3.1. As seen in Section 5, every homolorphic map has a natural choice for an \(MU_{\mathcal{D}}\)-orientation, the Bott orientation of Definition 5.9, which is functorial and compatible with pullbacks (Lemma 5.10.)
The above pushforward homomorphisms have the expected properties: like the Bott orientation, they are functorial and compatible with pullbacks, and moreover satisfy the projection formula of Theorem 4.14. Besides that, Proposition 4.10 shows how they relate to the pushforwards of complex cobordism and sheaf cohomology.
In order to introduce the pushforward morphisms and to prove their properties, the authors start by considering a different definition of Hodge filtered complex cobordism, which they call currential Hodge filtered complex cobordism, and which depends on the currents of Section 2.1 and not on forms. This program is carried out in Section 2, where these new rings are denoted by \(MU^n_\delta(p)(X)\). The main point here is that there is an isomorphism between the \(MU^n_\delta(p)(X)\) and the original geometric Hodge filtered complex cobordism groups \(MU^n(p)(X)\) (Theorem 2.16); since the currential version of the theory is easier to handle, it is the preferred tool in the presentation of pushforward maps in Sections 3 and 4.
Section 6 introduces the Hodge filtered fundamental class \([f]\) of a holomorphic map \(f : Y \rightarrow X\), an element in \(MU^{2p}(p)(X)\) (where \(p\) is the codimension of \(f\)) that is given by applying the pushforward \(f_*\) from before to the unit element. If \(X\) is a compact K\(\mathrm{\ddot{a}}\)hler manifold and \(f\) is nullbordant and proper, \([f]\) belongs to the subgroup \(J^{2p-1}_{MU}(X)\), a version of Griffiths’s intermediate Jacobian, and can then be considered an Abel-Jacobi-type secondary invariant. Since \(f_*\) has been constructed geometrically, the authors can present a geometric description of these secondary invariants (Theorem 6.10). Section 7 defines a Thom morphism from Hodge filtered complex cobordism to Deligne cohomology, using a new cycle model for the latter that depends on currents and not on geometric measure theory (as in H. Gillet and C. Soulé [in: Algebraic \(K\)-theory: Connections with geometry and topology, Proc. Meet., Lake Louise/Can. 1987, NATO ASI Ser., Ser. C 279, 29–68 (1989; Zbl 0719.14003)].) Section 8 then reports on recent progress on the kernel and image of this Thom morphism applied to compact K\(\mathrm{\ddot{a}}\)hler manifolds.

MSC:

55N22 Bordism and cobordism theories and formal group laws in algebraic topology
14F43 Other algebro-geometric (co)homologies (e.g., intersection, equivariant, Lawson, Deligne (co)homologies)
58J28 Eta-invariants, Chern-Simons invariants
19E15 Algebraic cycles and motivic cohomology (\(K\)-theoretic aspects)
32C35 Analytic sheaves and cohomology groups

Citations:

Zbl 0719.14003

References:

[1] O. Benoist, Steenrod operations and algebraic classes. 2022, arXiv:2209.03685
[2] O. Benoist and J. C. Ottem, Two coniveau filtrations. Duke Math. J. 170 (2021), no. 12, 2719-2753 Zbl 1478.14022 MR 4305380 · Zbl 1478.14022 · doi:10.1215/00127094-2021-0055
[3] J. M. Boardman, Conditionally convergent spectral sequences. In Homotopy invariant alge-braic structures (Baltimore, MD, 1998), pp. 49-84, Contemp. Math. 239, American Mathe-matical Society, Providence, RI, 1999 Zbl 0947.55020 MR 1718076 · Zbl 0947.55020 · doi:10.1090/conm/239/03597
[4] G. E. Bredon, Sheaf theory. 2nd edn., Grad. Texts in Math. 170, Springer, New York, 1997 Zbl 0874.55001 MR 1481706 · Zbl 0874.55001 · doi:10.1007/978-1-4612-0647-7
[5] U. Bunke, T. Schick, I. Schröder, and M. Wiethaup, Landweber exact formal group laws and smooth cohomology theories. Algebr. Geom. Topol. 9 (2009), no. 3, 1751-1790 Zbl 1181.55006 MR 2550094 · Zbl 1181.55006 · doi:10.2140/agt.2009.9.1751
[6] S. S. Chern and J. Simons, Characteristic forms and geometric invariants. Ann. of Math. (2) 99 (1974), 48-69 Zbl 0283.53036 MR 353327 · Zbl 0283.53036 · doi:10.2307/1971013
[7] G. de Rham, Differentiable manifolds. Grundlehren Math. Wiss. 266, Springer, Berlin, 1984 Zbl 0534.58003 MR 760450 · Zbl 0534.58003 · doi:10.1007/978-3-642-61752-2
[8] J. P. Demailly, Complex analytic and differential geometry. 2012, online book draft
[9] H. Esnault, Characteristic classes of flat bundles. Topology 27 (1988), no. 3, 323-352 Zbl 0699.32016 MR 963635 · Zbl 0699.32016 · doi:10.1016/0040-9383(88)90014-6
[10] D. S. Freed and J. Lott, An index theorem in differential K-theory. Geom. Topol. 14 (2010), no. 2, 903-966 Zbl 1197.58007 MR 2602854 · Zbl 1197.58007 · doi:10.2140/gt.2010.14.903
[11] H. Gillet and C. Soulé, Arithmetic Chow groups and differential characters. In Algebraic K-theory: connections with geometry and topology (Lake Louise, AB, 1987), pp. 29-68, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 279, Kluwer Academic Publishers, Dordrecht, 1989 Zbl 0719.14003 MR 1045844 · Zbl 0719.14003 · doi:10.1007/978-94-009-2399-7_2
[12] P. Griffiths and J. Harris, Principles of algebraic geometry. Wiley Classics Lib., John Wiley & Sons, New York, 1994 Zbl 0836.14001 MR 1288523 · Zbl 0836.14001 · doi:10.1002/9781118032527
[13] R. Harvey, B. Lawson, and J. Zweck, The de Rham-Federer theory of differential characters and character duality. Amer. J. Math. 125 (2003), no. 4, 791-847 Zbl 1060.58004 MR 1993742 · Zbl 1060.58004 · doi:10.1353/ajm.2003.0025
[14] K. B. Haus and G. Quick, Geometric Hodge filtered complex cobordism. Adv. Math. 431 (2023), article no. 109244 Zbl 07741093 MR 4628822 · Zbl 1529.55005 · doi:10.1016/j.aim.2023.109244
[15] F. Hirzebruch, T. Berger, and R. Jung, Manifolds and modular forms. Aspects Math., E 20, Springer Fachmedien Wiesbaden, Braunschweig, 1992 Zbl 0767.57014 MR 1189136 · Zbl 0767.57014 · doi:10.1007/978-3-663-14045-0
[16] M. J. Hopkins and G. Quick, Hodge filtered complex bordism. J. Topol. 8 (2015), no. 1, 147-183 Zbl 1349.32009 MR 3335251 · Zbl 1349.32009 · doi:10.1112/jtopol/jtu021
[17] L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Classics Math., Springer, Berlin, 2003; Reprint of the second (1990) edition Zbl 1028.35001 MR 1996773 · Zbl 0712.35001 · doi:10.1007/978-3-642-61497-2
[18] D. Huybrechts, Complex geometry. Universitext, Springer, Berlin, 2005 Zbl 1055.14001 MR 2093043 · Zbl 1055.14001 · doi:10.1007/b137952
[19] M. Karoubi, Théorie générale des classes caractéristiques secondaires. K-Theory 4 (1990), no. 1, 55-87 Zbl 0716.57018 MR 1076525 · Zbl 0716.57018 · doi:10.1007/BF00534193
[20] M. Karoubi, Classes caractéristiques de fibrés feuilletés, holomorphes ou algébriques. In Pro-ceedings of Conference on Algebraic Geometry and Ring Theory in honor of Michael Artin, Part II (Antwerp, 1992). K-Theory 8 (1994), no. 2, 153-211 Zbl 0833.57012 MR 1273841 · Zbl 0833.57012 · doi:10.1007/BF00961455
[21] M. Levine and F. Morel, Algebraic cobordism. Springer Monogr. Math., Springer, Berlin, 2007 Zbl 1188.14015 MR 2286826 · Zbl 1188.14015 · doi:10.1007/3-540-36824-8
[22] G. Quick, An Abel-Jacobi invariant for cobordant cycles. Doc. Math. 21 (2016), 1645-1668 Zbl 1355.14016 MR 3603931 · Zbl 1355.14016 · doi:10.3934/dcdsb.2016016
[23] B. Totaro, Torsion algebraic cycles and complex cobordism. J. Amer. Math. Soc. 10 (1997), no. 2, 467-493 Zbl 0989.14001 MR 1423033 · Zbl 0989.14001 · doi:10.1090/S0894-0347-97-00232-4
[24] C. Voisin, Hodge theory and complex algebraic geometry. I. Cambridge Stud. Adv. Math. 76, Cambridge University Press, Cambridge, 2002 Zbl 1005.14002 MR 1967689 Communicated by Otmar Venjakob Received 2 April 2023; revised 6 December 2023. Knut Bjarte Haus Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 · doi:10.1017/CBO9780511615344
[25] Trondheim, Norway; knut.b.haus@gmail.com Gereon Quick Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491
[26] Trondheim, Norway; gereon.quick@ntnu.no
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.